
.

.

iAD: Query optimization in MARS
Trondheim, Fall 2008

Alex Brasetvik
Hans Olav Norheim

TDT4510 - Specialization Project

Supervisor: Svein Erik Bratsberg

Abstract

ăis document is the report for the authors’ joint effort in researching and designing a
query optimizer for fast’s next-generation search platform, known asMARS.ăeworkwas done
during the pre-project to the master thesis at the Department of Computer and Information
Science at the Norwegian University of Science and Technology, autumn 2008.

MARS does not currently employ any form of query optimizer, but does have a parser and
a runtime system. ăe report therefore focuses on the core query optimizing aspects, like plan
generation and optimizer design. First, we give an introduction to query optimizers and se-
lected problems. ăen, we describe previous and ongoing efforts regarding query optimizers,
before shiĕing focus to our own design and results.

MARS supportsDAG-structured query planswhichmeans that the optimizermust do so too.
ăis turned out to be a greater task than what it might seem like. ăe optimizer also needed
to be extensible, including the ability to deal with query operators it does not know, as well as
supporting arbitrary cost models.

During the course of the project, we have laid out the design of an optimizer we believe
satisđes these goals. DAGs are currently not fully supported, but the design can be extended
to do so. Extensibility is solved by loose coupling between optimizer components. Rules are
used to model operators, and the cost model is a separate, customizable component. We have
also implemented a prototype that demonstrates that the design actually works.

Foreword

Both of us haveworkedwith databases for quite some time—Alex primarilywithPostgreSQL,
and Hans Olav with Microsoĕ SQL Server. We both consider ourselves to be well above aver-
age interested in databases and their inner workings, including query optimization. However,
until now, neither of us have had the opportunity to go deep in this exciting topic.

During the course of the project we have learned a lot, and at the same time produced
something we believe is a good foundation for the upcoming master thesis.

We would like to thank Svein Erik Bratsberg at IDI, NTNU and Øystein ăorbjørnsen at
fast for their helpful and insightful advice.

We would also like to thank ăomas Neumann at the Max-Planck-Institut für Informatik
for his helpful answers about the principles presented in his dissertation, andGuidoMoerkotte
at theUniversity ofMannheim for providing us the latest draĕ of his query optimization book.

Alex Brasetvik Hans Olav Norheim

Trondheim, December 2008

iii

Contents

1 Introduction 1
1.1 Goals of ăe Project . 2
1.2 Abstract View of an Optimizer . 2
1.3 Runtime System . 3
1.4 What Makes MARS Different to RDBMS-es? 3
1.5 Current State of Query Optimization in MARS 4
1.6 Selected Problems Related to Query Optimization 4
1.7 Overview of the Report . 11

2 Case Studies and PreviousWork 13
2.1 Introduction . 13
2.2 ăe Early Years: System R . 13
2.3 PostgreSQL and Other Open Source Query Optimizers 15
2.4 Rule-based Optimization . 16
2.5 Transformative vs. Constructive Optimizers 16
2.6 ReĔections . 20

3 Cost Estimation and Statistics 21
3.1 Introduction . 21
3.2 Cost Factors . 21
3.3 Statistics and Example Calculations . 22
3.4 Cost Component . 24
3.5 Statistics Gathering . 25
3.6 Statistics and MARS . 26

4 DAG-Structured Query Graphs 27
4.1 Introduction and Previous Work . 27
4.2 Motivation . 27
4.3 Challenges . 29
4.4 Share Equivalence and Common Subexpressions 30

5 Design and Implementation 33
5.1 Introduction and Goals . 33
5.2 ăe Big Picture . 34
5.3 Node Structure . 36

v

5.4 Pre- and Post-Processing . 37
5.5 Plan Generation . 38
5.6 Graph Pattern Matching . 50

6 Rules: Search Space and Pre-/Post Processing 53
6.1 Introduction . 53
6.2 Transformation Rules . 54
6.3 Constructive Rules . 56

7 Current State 65
7.1 Results . 65
7.2 Identiđed Issues and Suggested Solutions 68
7.3 Sample Query Optimizations . 70

8 Conclusion and FurtherWork 77
8.1 Evaluation . 77
8.2 Further Work . 78

A Code Samples 81
A.1 Rule Binder Initialization . 81
A.2 dot Language Sample . 82
A.3 Selection Rule . 82
A.4 MergeTrimSort Rule . 86
A.5 BitSet . 87
A.6 Optimizer Tests . 91

B CD-ROM 93
B.1 How to Run the Optimizer . 93

Bibliography 95

1
Introduction

“Life is what happens while you’re busy making other plans.” — John Lennon

Databases and search engines are accessed by executing queries. Ever since the introduction
of the automated query optimizer in System R [SAC+79], query optimization has been the
subject of much research. Query optimizers are key to enabling user-friendly declarative query
languages. Users declare what they want out of the database — how to do it in an efficient
manner is then leĕ as an exercise for the optimizer component in the database system. With
earlier database systems, such as CODASYL and IMS, users had to program exactly the steps
the database had to perform in order to return the desired results. System R and INGRES
proved that query optimizers could compete with all but the best programmers [SH05b].

Query optimizers are also oĕen referred to as “query planners”Ʋ. ăe term “planner” cap-
tures another important point of declarative query languages: ăe way a query is executed can
be changed by the system at query time, transparent to the user. For example, as time goes,
some tables may be partitioned and/or changed into views. Since the queries are declarative,
such changes will not (necessarily) cause old queries to stop working. ăus, they are not solely
useful for optimization-tasks.

Query optimization is the process of translating an input query to a data structure that is
efficiently executable by the system’s executor — a query evaluation plan. Query evaluation
plans are further described in Section 1.2 and 1.3. In short, a query evaluation plan is a com-
bination of operators that are actually executable by the evaluation system.

For example
σfoo<42∧A.id=B.id (A× B) (1.1)

(σfoo<42 (A)) ◃▹A.id=B.id (σfoo<42 (B)) (1.2)

are equivalent, but as is,Query1.2 is probably executedmore efficiently thanQuery1.1. Query1.2
can complete in milliseconds, whereas Query 1.1, by making a cartesian product, can be infea-
sible to execute.

Optimization is a difficult problem to tackle. ăe search space grows exponentially not
only with respect to relations and their join orderings, but also when different aspects such as
recursion, parallelization, distribution, rank-awareness, custom operators, materialized views,
multiple query-optimization, etc. need to be taken into consideration.

Furthermore, many speciđcs related to query optimization are treated as corporate secrets
— the better the optimizer, the better the product would perform on TPC-* compared to
rivaling products.

Ʋăroughout this report, we’ll consistently refer to them as “optimizers”.

2 Chapter 1. Introduction

In this project, wehave studied research articles related toquery optimization, aswell as real
implementations, as implemented in Open Source DBMS-es such as PostgreSQL, MySQL,
SQLite and MonetDB.

1.1 Goals of The Project

ăe goals of this project are to get a broad overview of the current state of query optimization,
and sketch an extendable (as explained in Section 5.1) architecture that can serve as the basis
for future development. We plan to continue the work done in this project in ourmaster thesis
the following semester.

Prioritized, our goals are as follows:

1. Get a broad overview of ongoing efforts within the query optimization research đeld.

2. Analyze the various approaches and techniques and justify their suitability for a future
query optimizer for MARS.

3. Devise a skeleton architecture and design for an optimizer that is clean and extendable,
as well as a foundation to implement the techniques found in the previous point.

4. Implement small parts of the architecture and some simple optimization rules. ăe im-
plementation should lay the foundations for the work in the upcoming master thesis,
and not be so simple it needs to be replaced completely.

1.2 Abstract View of an Optimizer

.
.Evaluate.Parse .Plan Generation .Post-process.Pre-process.Analyze

Figure 1.1: Overview of query processing

Figure 1.1 shows a simple overview of how a query moves through various steps during ex-
ecution. ăroughout the report, we will use the term execution for the entire process, and
evaluation for the step where the query plan is evaluated to produce result sets.

First, the query is parsed into a query graph. Normally, this query graph is a tree, butDAGs
are also applicable query graph structures, as discussed in Chapter 4.

ăen, the query is analyzed for semantic validity— such as checking that the query is well-
formed, that the mentioned relations exist and that the user has access, etc.

A valid query is then rewritten: Views and sub-selects are Ĕattened, stored procedures in-
lined, etc. ăen, the optimizer decides join ordering and -algorithms, pushes and pulls pred-
icates around, and other techniques to ensure as efficient evaluation as possible. A second
rewrite phase may be employed, now working on the physical algebra generated in the Opti-
mize step.

ăeoutput from theđnal optimizationphase is an executable “plan”, which is a query graph
with physical, executable operators.

When the optimizer considers different equivalent plans, it uses a cost model . ăe cost
model deđnes what “costs” the optimizer should minimize — such as I/O (sequential vs. ran-
dom), CPU-time, memory, response time and communication costs. To get an idea of what
operators cost, the optimizer consults statistics about relations and their data distributions.
Cost models and statistics are discussed in Chapter 3

1.3. Runtime System 3

1.3 Runtime System

ăe output of the query optimizer is a query evaluation plan (hence “query plan” or QEP for
brevity), which is executed by the query evaluator. ăis section brieĔy describes how typical
tree-structured query plans are evaluated. In Section 4.3.2 we describe how DAG-structured
queries differ andhow they can be evaluated. ăeir complexity is due to the fact that the output
of an operator can be the input to more than one operator.

A query planƳ is a tree structure where the nodes are physical operators. I.e. instead of
containing relational algebra operators, such as one selection and a join, they contain two scan-
operators and a speciđc join-implementation — for example a đle scan, an index scan and a
nested loop join.

ăe nodes typically have an iterator-interface. Evaluation is then done by consecutively
calling next() from the root node of the tree. Consequently, the root node calls next() on
its input operators, which in turn calls next() on their input operators recursively until a leaf
node is reached. Data typically originate from the leaf nodes, which are usually some kind of
scan-node. However, this is not always the case, for example with MARS’ Exchange-operator.

Some operators can be pipelined. ăat is, they pass on output incrementally, without
needing to process the entire input đrst. For example, a join operator need not see the entire
input before passing tuples joined so far to its output node. When operators can be pipelined,
the overhead of materialization is avoided. Materialization is saving the output (or input, if it
is a separate node) in a temporary relation, which may outgrow permitted or available mem-
ory usage and thus need to be Ĕushed to disk. Pipelining is typically preferred, as it decreases
needed buffer space, and increases alacrity. However, as we will see in Section 4.3.2, when
output of one operator can be the input of multiple other operators, pipelining becomes more
difficult.

1.4 What Makes MARS Different to RDBMS-es?

1.4.1 Introduction to MARS

MARS is fast’s next generation search engine. It is a hybrid of a relational database and a search
engine. It is designed for information retrieval usage andnot transactionprocessing, but retains
many RDBMS-concepts and operators, such as JOINs. fast’s existing search engine, ESP®, lacks
the JOIN-operator, so the schemas (describing “documents”) tend to be very denormalized and
can thus be costly to maintain and alter. In MARS, data is structured into records, contained in
indexes. ăese indexes can be joined, either via merge- or hash-joins — nested loop joins are
currently not available. ăe indexes do not have anymetadata about relations and foreign keys,
and referential integrity and such is not enforced.

One important goal of MARS is that custom operators should be easy to implement and
reuse. ăus, it is very extensible. MARS is written in C# 3.0 on the .NET Framework, which
means that we have written our optimizer in C# as well.

1.4.2 Key Differences

InMARS, query graphs are expressed as directed acyclic graphs (DAGs), and not simply as trees,
as is prevalent in most implementations and literature about query optimizers. ăis allows the

Ƴăe term“plan”will be used a lot throughout this report. In later chapters, itmay also refer to lightweight data
structures used in the search phase of the optimization — which are not directly executable without translation.
What meaning is referred to should be obvious in their respective contexts.

4 Chapter 1. Introduction

output of one operator to be the input ofmore than one operator, introducingmany optimiza-
tion opportunities and -problems. See Chapter 4 for more on optimization of DAGs.

Also, MARS is đrst and foremost a search engine — and certainly not a general purpose
OLTP- or OLAP-database. It is designed and optimized for queries that will yield results in a
short amount of time — search engine users usually expect short response times.

Updates to the index are usually done in batches, as updates are expensive and changes in
one object may ripple to other objects, e.g. due to relevancy calculations.

Oĕen, one search query should return more than one result set, e.g. grouped by different
columns. ăerefore,MARS is designed to supportMulti-query, which alsomeans that the query
optimizer must support it.

1.5 Current State of Query Optimization in MARS

Currently, MARS does not employ a query optimizer. ăe queries are input to the runtime sys-
tem as the physical query graph that will be executed. All operators (at least as far as we know)
in MARS today are physical operators. For instance, there exists a HybridHashJoin operator
and a MergeJoin operator, but no Join operator, which is the logical equivalent. Some of them
are both logical and physical, e.g. Select or Project. Moreover, it currently does not store any
statistics usable for query optimization.

1.6 Selected Problems Related to Query Optimization

In this section, we give a brief overview of selected issues related to query optimization. ăe
space of various possibilities of optimizations is so vast, it is infeasible to cover all aspects in a
single optimizer — at least while keeping it extensible and performant. Also, we have a fairly
limited amount of time and resources, so we need to restrict the scope of our project.

However, it is important to be aware of practical ways of getting better query plans, to
design an extensible and maintainable query optimization framework that allows new rules
and transformations to be developed later on — i.e. future-proođng the architecture.

Each issue is not equally important — some are just mentioned, while others are covered
in depth in other chapters.

Except for the issues that are general for most kinds of query optimization, we shortly re-
Ĕect on the problem’s relevancy to MARS.

1.6.1 Plan Enumeration

Query optimization is a combinatorial search problem. Enumerating all “interesting” plans is
expensive. ăe search space is vast and infeasible to explore exhaustively, so we need to con-
strain it. When doing so, we should prune the bad plans while keeping the optimal plan(s)
— without knowing which one that is, using a merely approximate cost model. In reality, we
oĕen need to settle for a “good” plan, which is not necessarily optimal, but at least not awful!

Non-exhaustive strategies are either deterministic or probabilistic [LPK+94]. Determin-
istic planners, such as System R’s, use heuristics to limit the search space. For example, it only
considers leě-deep join trees, and not bushy ones— as shown in Figure 1.2. ăe bushy plan can
be the optimal one, but it is not even considered. Probabilistic optimizers, such as Simulated
Annealing and Iterative Improvement, randomly choose a query plan or transform the query
according to some probability.

1.6. Selected Problems Related to Query Optimization 5

Leĕ-deep plans are plans where all joins have a base table as its right input, and thereby any
other subjoins as its leĕ. If we only consider plans without cross products, the size of the
search space for leĕ-deep plans for n relations is 2n−1 [Moe06]. Leĕ-deep plans are also
easily pipelined, as described in Section 1.3

Zig-zag plans are plans where all joins have at least one base table as input (leĕ or right), and
without cross joins, the size of the search space is 22n−3 [Moe06].

Bushy plans has no restrictions on join inputs, and gives a search space of size 2n−1C(n− 1),
whereC(n) is theCatalanNumbers, which grow in the order ofΘ

(
4n/n3/2

)
[Moe06].

Bushy plans are more amenable to parallelization.

So far, our optimizer enumerates all bushy plans, and can do only leĕ-deep plans, but not
automatically if it realizes that there are too many relations.

.
.A

.C

.B

.D

.◃▹

.◃▹

.◃▹

(a) Leĕ-deep
.
.A .C.B .D

.◃▹ .◃▹

.◃▹

(b) Bushy
.

.A

.C

.B

.D

.◃▹

.◃▹

.◃▹

(c) Zig-zag

Figure 1.2: ăree query trees

1.6.2 Operator and Predicate Migration

By migrating certain operators and predicates, we can oĕen achieve more efficient plans. For
example, we oĕenwant to push selects through joins, as selects can be cheaper than joins. Con-
sider the queryƴσperson.id=42 (person ◃▹ city), that is selecting a particular person from the join of
all people and all cities. Clearly, σperson.id=42 (person) ◃▹ city, that is selecting a particular person
and then joining with city, is much more efficient.

However, this is not always true. For example, assume we have an index on person.city_id
and consider a query for all people born aĕer 1950-01-01 living in Å⁴:

σperson.birth>1950−01−01 (person ◃▹ σcity.name=Å (city))

If we assume the database holds the population of Norway, the amount of people living in
Å is certainly less than those born aĕer 1950-01-01 anywhere in the country. ăus, doing a
selection on person before the join in this case can be more expensive. Instead, we want to use
the index on the join key, and then apply the person.birth-predicate. Even if we had an index on
person.birth, the predicate would not be selective enough to justify index lookups. To determine
this, the optimizer needs statistics that suggest the distribution of the values. See Section 1.6.4.

Another interesting case is when predicates are user-deđned functions, which can be ex-
pensive to execute. ăese are discussed in Section 1.6.7.

ƴIn our examples, we value clarity over design best practices.
⁴A small village in the municipality Moskenes, Lofoten, Norway

6 Chapter 1. Introduction

Nested
loop join

Join

Person Minister

City

Index lookup:
person.id Table scan

Figure 1.3: Example of a physical evaluation plan

1.6.3 Access Path Selection and Join Ordering

Anaccess path is a speciđcway to access the records. It canbe a full table scan (also called sequen-
tial scan, đle scan, clustered index scan in various systems), or one of several available indexes.
In the previous section, a query accessed a person-table which had indexes on its primary key
as well as person.birth. Both these indexes as well as a full table scan could be considered when
performing the query — with different costs. Access path selection is the determination of
which access method is the better one. It also involves considering properties of the returned
results as well, such as ordering.

When joining several tables, there is usually several orders in which they can be joined.
Consider the tables person, city and minister, where the latter holds information about the gov-
ernment. We want to display information about all ministers, including information about
their home city, that is city ◃▹ person ◃▹ minister. In what order should the joins be performed?
Since the number of ministers is a lot less than the entire population, it is clear that joining
city ◃▹ person đrst is suboptimal, because of low selectivity. In fact, city and minister are proba-
bly both so small their sizes are negligible. It is person we need to avoid costly access paths on.
A reasonable join order, then, is joining minister and person đrst: city ◃▹ (person ◃▹ minister).
ăe physical plan could look like Figure 1.3.

1.6.4 Statistics Maintenance and Cost Estimation

When deciding what access paths to use and in which way to order joins, the planners needs to
consider relation- and join cardinalities and the relations’ value distributions. In the previous
example, we reasoned that a certain join ordering was a good one, due to the sizes of the input
relations. ăat is a statistic that the planner needs access to. If this statistic is outdated or
otherwise wrong, it may cause the planner to choose horrible plans.

Typical information stored about relations, is their cardinality, size in pages, etc. ăese
provide information about the cost of a full table scan. However, we oĕen also want statistics
about the value distribution of certain columns. For example, in Section 1.6.2 we reasoned
about the distribution of people based on their age/birth date. By doing so, we can reason
about a predicate’s selectivity. Doing so is important when weighing the cost of different access
paths.

ăese statistics are costly to maintain. It is infeasible to provide accurate statistics about
value distributions, so they are instead sampled. Moreover, storing these statistics in an efficient
and accurate manner is also a concern.

1.6. Selected Problems Related to Query Optimization 7

Another valuable use of statistics is to reason about data correlations. Such knowledge can
be valuable when evaluating access paths and join orderings.

Usage and maintenance of statistics are discussed further in Chapter 3.

1.6.5 Partitioning, Parallelization, Replication and Distribution

When dealing with large data sets, or data sets that are rarely coupled, it is reasonable to par-
tition the data. How the data is partitioned clearly affects how it is queried. For example, if
data is partitioned on several nodes in a round-robin fashion, it is likely that every node must
be queried in order to get all relevant results. However, data can also be partitioned on ranges
and arbitrary (mutually exclusive) constraints, a technique which also makes sense to employ
on single nodes. For example, with a constraint ensuring that only “recent” (for some deđni-
tion of recent) data reside in a partition (and older or archived data residing in any number of
other partitions), a query optimizer can ensure that the excluded partitions are not searched,
which can greatly reduce the evaluation costs. ăis technique is called constraint exclusion.

Query execution can also oĕen be parallelized — both with multiple CPUs and/or with
multiple nodes. With cheaper and more powerful commodity hardware, this is becoming an
increasingly interesting avenue [GHK92].

When done right, this will certainly speed up the query execution, but it also introduces
new problems. Dependencies in execution are clearly important, but communication costs
complicate the cost evaluation: not only do we need to consider lots of different plans, but we
also need to considerwhere sub-plans are executed, what data they have locally, and predict the
costs of transferring results from one node to another.

MARS has support for an Exchange-operator, which is used to handle data exchange when
parallelizing execution, but our fast-representative told us to focus on the basic issues on one
node đrst. ăere are issues related to replication as well — which are also deferred to the next
semester’s master thesis.

1.6.6 Heterogenous Environments

Distributing and parallelizing execution on numerous nodes become even harder when the
environment is composed of several different application stacks. If there are multiple ways of
executing the query, it can be difficult to reason about the costs of the partial problems that
can be executed on different nodes. As with parallel execution, mentioned in the previous
subsection, we may also need to consider the communication costs in the cost model.

Although interesting forMARS, for example by integrating with SQL Server, this is an even
harder problem than those of the previous subsection.

1.6.7 User Deöned Functions

An important property of several database systems are their extensibility. Users can develop
custom functions that are executed on the database.

Such functions can appear both as values, in predicates and as relations:

• SELECT id, frobnicate(value) FROM …

• SELECT … FROM … WHERE … AND coverage(…) < 42

• SELECT … FROM generate_series(0,1000)

8 Chapter 1. Introduction

ăe đrst two cases pose a challenge to an optimizer. ăe set returning functions may be
optimized, if they arewritten in a procedural languagenative to thedatabase and inlinedduring
rewriting. ăen they are optimized as a regular subquery.

Consider the following example of the second case, where we have a user deđned function
as a predicate, due to [HS93]:

1 /* Find all channel 4 maps from weeks starting in June that show more than 1%
2 snow cover . Information about each week is kept in the weeks table , requiring
3 a join */
4 SELECTmaps.NAME
5 FROMmaps JOIN weeksON (maps.week=weeks.number)
6 WHERE weeks.month=’June’ANDmaps.channel=4AND coverage(maps.picture) > 1

In this case, coverage(…) is an expensive user deđned function. If we naïvely push all pred-
icates below joins, we will be calling coverage(…) on a lot more rows than if we pull it up and
apply the restriction aěer the join.

In addition to considering whether the user deđned functions is expensive we also need to
consider whether they are volatile, stable or immutable [Pos08a]:

• Volatile functions can do anything — return different results for each invocation, and
modify the database. An optimizer cannot optimize its usage: it has to be re-evaluated
every time.

• Stable functions cannot modify the database and promise to return the same value for
the same input arguments in a single statement.

• Immutable functions are as stable functions, except they will always return the same
value for the same input arguments.

Only stable and immutable functions can be optimized. But how do we determine their
cost? Eventually, we clearly need to provide some interfaces to allow user deđned functions to
inform the optimizer about their evaluation characteristics. MARS emphasizes that it must be
easy to develop custom operators and functions. Hence, these issues are realistic.

1.6.8 Rank-aware Optimization

Ranking functions deđne a measure of relevance of an input record. ăey are oĕen used in a
contextwherewewant recordswithin certainboundariesof the scoredeterminedby the ranking
function — or the top-k.

[ISA+04] introduces rank-join-operators, which progressively rank the join result and
stops as soon as the top-k results can be reported. ăey argue that by enabling efficient eval-
uation of ranking queries, relational databases can efficiently answer Information Retrieval
queries. Hence, these techniques may be interesting in MARS, which is an attempt to combine
the best from relational query engines and search engines, as discussed in Section 1.4.

SinceMARS is a search engine that dealswith information retrieval andnot solely a database,
the result sets are oĕenorderedby some rank. MARSdoesnot currently have rank-join-operators,
so we have not delved deeply into them. However, since the architecture must support more
than one join operator anyway, we believe that support for a rank-join-operator can be added
as another join-helper-rule. ăese are described further in Section 6.3.6.

1.6. Selected Problems Related to Query Optimization 9

1.6.9 Multi-query Optimization

We oĕen need to perform multiple queries to get all the results we want. For example, a prod-
uct search on an online store can produce results grouped by producer, price range, customer
reviews, availability, and so on. In this case, the results of all the queries are the same, but or-
dered differently. Clearly, it is not necessary to perform all those queries from scratch for every
ordering we need them in, but few query optimizers considers these possibilities. For example,
given the query SELECT * FROM (SELECT TOP 50 * FROM test ORDER BY bar ASC) t1 UNION

ALL SELECT * FROM (SELECT TOP 50 * FROM test ORDER BY bar DESC) t2, which takes
the 50 đrst and 50 last tuples from test ordered by bar, SQL Server 2008 produces the plan
depicted in Figure 1.4. ăis could have been solved better by using a DAG and not scanning
the input relation more than once. In this case, there is no index on test.bar. ăe “clustered
index scan” is in reality a table scan.

In Section 4.2, we show a more thorough motivating example regarding multi-query opti-
mization. MARS supports multi-query execution, and they are amenable to being structured as
DAGs and allow sharing of intermediate results.

Figure 1.4: Example query tree which could be optimized in a query-DAG (screenshot from
Microsoĕ SQL Server)

1.6.10 Inferring Function Semantics

ăe goal of semantic query optimization is to use application- and/or domain-speciđc knowl-
edge to optimize queries.

In [CZ98b], Cherniack and Zdonik describe how some rewrite rules are too general to
be expressed with rewrite rules. For example, transforming arbitrary boolean expressions into
conjunctive normal form cannot be expressed with a simple rule. On the contrary, some rules
are too speciĖc to an application context to be a generic optimization rule. For example⁵, with
the two OQL-queries …

1. SELECT DISTINCT x.reps.capital FROM x IN S

(the capital cities represented by the senators in S)

2. SELECT DISTINCT (SELECT d.mayor FROM d IN x.reps.cities) FROM x IN S)

(the mayors of cities in the states represented by the senators in S)

… it is possible to skip the duplicate elimination. Because of the semantics of the relations, the
intermediate results are already free of duplicates: a state only has one senator, a city can just
be the capital of one state, and a city only has one mayor. Such semantics are not limited to
foreign keys between relations. ăey develop two languages, COKO and KOLA, that express
rewrite, transformations and when they are đred. ăe rules are also automatically veriđable by
a theorem prover.

⁵Example due to [CZ98b]

10 Chapter 1. Introduction

MARS does not currently have any features regarding inferring function semantics — not
even foreign key relationships to suggest how different data relate. We have therefore not stud-
ied this any further. However, it could be interesting to some time in the future allow develop-
ers to express semantics about their data and relationships, to better aid the optimizer’s decision
process.

1.6.11 Adaptive Query Optimization and Dynamic Query Plans

An adaptive query processing system is one that considers and monitors the state of its envi-
ronment to determine its behavior [HFC+00].

In large scale database- and search engines, utilizingnumerousnodes, failures are inevitable.
ăus, it is important to be able to devise good plans, also in the presence of node failures and
variable availability, as well as detecting this situation quickly.

To be able to choose good plans, the optimizer needs reliable and accurate statistics, to es-
timate selectivity and cardinality. Changed statistics immediately affects the decisions of the
optimizer, so how do we ensure a high đdelity between the actual data (which is part of the en-
vironment) and the statistics? One suggested method is to use results from performed queries
to maintain statistics [CR94]. ăis enables continuously maintained statistics. ăese issues
are discussed a bit more in Chapter 3.

In [CG94], Cole and Graefe describe how “static” query plans, made with assumptions
about selectivity and resource availability at compile (optimization) time, can be sub-optimal
for their actual (possibly changing) run-time invocations. ăe environment can even change
while the query is running! For example, a node can suddenly disappear, as mentioned in the
previous paragraph.

ăey introduce an operator “choose-plan” that is executed run-time to reevaluate the cur-
rent evaluation plan. For example, if the selectivity estimation of a selection turned out to
be estimated wrongly (detected by the evaluation system), the join orderings can be recon-
sidered. Also, the optimizer can decide certain points in the plan where plan-reconsideration
could make sense — perhaps due to uncertainties with selectivity estimation (detected by the
optimizer).

MARS does not currently even have an optimizer, so the choose-plan-operator is certainly
not available. Being able to alter the plan on the Ĕy is also likely to necessitate considerable
changes to the runtime-system. ăerefore, we have not studied this any further. However, we
imagine this could be added as a post-processing step.

1.6.12 Genetic Query Optimization Algorithms

When dealing with very complex queries, the search space can get too large even with efficient
pruning. For example, thePostgreSQLORDBMSuses a genetic query optimization algorithm
when the number of relations to be joined is≥12 [Pos08a].

A genetic optimization algorithm uses a nondeterministic, random search. Possible plans
are considered a population of individuals. Individuals each have chromosomes and genes. By
simulating evolutionary processes, such as mutation and selection, new generations of individ-
uals with better properties than their ancestors are introduced [Moe06,Pos08a].

Genetic algorithms are not simply random guesses for a solutions. ăe search uses stochas-
tic processes, so it is better than random [Pos08a].

Since query optimization is exponential in nature, and MARS could possibly have to deal
with queries that are too complex for our optimizer to handle, genetic optimization algorithms
are one possible approach. However, we are not knowledgeable about this subject, and our
fast-representative has told us not to worry too much about the really complex queries.

1.7. Overview of the Report 11

1.6.13 Proving correctness

Query optimizers repeatedly transform and change the query. ăe goal is always to achieve a
better plan without changing the semantics of the query. However, doing so provably correct
becomes increasingly difficult when the number of rules and transformations increases, as the
number of possible combinations of the rules explode. ăis is especially true for extensible
query optimizers, where rules and transformations are implemented by plugins and are not a
part of the optimizer core. It is easy to test a new rule in isolation, but hard to predict how
it interacts with and inĔuences the existing rules. In [CZ98b], Cherniack and Zdonik argue
that rules are best expressed declaratively and not in code, to be able to verify rule correctness
automatically with theorem provers. However, they acknowledge that the expressive power
of automatically provable rules are not sufficient to express many necessary query transforma-
tions.

Generally, proving correctness approaches the unfeasiblewhen complexity increases. ăus,
pursuing the provable is not practical. To remedy this, the optimizer must be easily testable by
design. Every rule and every component must be testable in isolation — and in combination.
We have a few unit tests that assert the outcome of the optimization, but since we have not
implemented too many rules yet, testing infrastructure and -helpers have not been prioritized.
However, changing various components to use a dependency injection-pattern to ease “mocka-
bility” does not require substantial effort.

1.7 Overview of the Report

ăe rest of the report is structured as follows. Chapter 2 talks about various approaches to
query optimization, especially rule-based approaches, and gives an introduction to transforma-
tive vs. constructive optimization. We also give a brief description of the System R-optimizer,
which is considered a seminal work in the area of query optimization. Chapter 3 gives and in-
troduction to costing of query plans and ends with a description of the cost component in our
optimizer. Chapter 4 discusses how MARS’s DAGs affect query optimization. Chapter 5 is the
bulk of the report, and describes our optimizer implementation, both design and algorithms.
ăis Ĕows naturally over to Chapter 6, which presents the rules the optimizer implementation
uses. We discuss the rule interface, and have included a few samples. Chapter 7 presents the
results of the project and discusses the current state of the optimizer. Chapter 8 concludes the
report and wraps up further work and a plan for the next semester’s work on our master thesis.
Appendix A includes selected code samples, while Appendix B describes the contents of the
accompanying CD-ROM.

Code Samples

ăe report includes quite a few code samples to illustrate how the optimizer implementation
works. ăey are all given inC#, which is the language we have used for implementation. Com-
mon for all of them is that we have focused on making them easy to read and understand, em-
phasizing the important concepts. ăismeans that we have simpliđedmost of them, removing
things not necessary for understanding. Most of the code will therefore not compile as it is.
ăe reader is referenced to the accompanying CD for the complete code.

In the code, we do follow C# coding guidelines (like curly braces on a new line), but has
sacriđced it to save space in the report.

12 Chapter 1. Introduction

2
Case Studies and Previous Work

2.1 Introduction

In this chapter, we describe some systems and articles we have looked into in more detail than
those listed in the “Selected Problems”-section in the Introduction.

We start out with System R, as it is a historically important system, which was successful
partially due to its query optimizer. ăen we describe PostgreSQL, an open source database
systemwith a solid query optimizer. However, most of the chapter is devoted to rule-based and
transformative- or constructive approaches to query optimization. Wedescribewhatmodel we
settled on for our query optimizer, and — more importantly — why.

2.2 The Early Years: System R

Asmentioned in the introduction, SystemRpioneeredquery optimization, proving that declar-
ative, easy-to-use query languages were viable means of interfacing database systems. Its design
choices has inĔuenced many current relational query optimizers. We mention it due to its his-
torical importance, and to have a coherent and succinct description of a working optimizer.

In the seminal article “Access Path Selection in a Relational Database Management Sys-
tem” [SAC+79], Selinger et al. described the techniques used in System R. It is a bottom-up
optimizer which uses a dynamic programming algorithm to đnd the leĕ-deep plan that min-
imizes the cost of the overall plan. ăe cost calculation is explained later. Possible scans are
sequential scans, and clustered and non-clustered index scans. Hash joins were not available
— nested loops- and merge-joins were the two possible join operations. Indexes were imple-
mented as B-trees.

ăe optimizer begins by parsing the query into blocks, which are then optimized one by
one. If queries are nested, the nested subqueries are treated as subroutines which return tuples
to the predicates they occur in. Queries are not rewritten to ęatten subqueries, however.

For every block, all available access paths for the accessed relations are considered, paying
attention to cost and interesting orders— that is orders compatible with the block’s ORDER BY-
or GROUP BY-clauses. ăis deđnition of “interesting” is a bit limiting, though. It is possible to
exploit orderings also when the query itself does not imply a speciđc ordering — for example
when two clustered indexes are available for two relations that are to be joined, possiblymaking
a merge join a cheap alternative. ăe cheapest plans are kept for further consideration.

To be able to estimate approximate costs for access paths, statistics about the various rela-
tions are fetched from the system catalog. ăe statistics are not maintained continuously, but
updated periodically with an UPDATE STATISTICS-command. ăe statistics kept are

14 Chapter 2. Case Studies and Previous Work

• NCARD (t) — the cardinality of relation t.

• TCARD (t) — the number of pages in the segment that holds tuples of relation t. ăere
can be tuples of other relations in the same segment, thus …

• P (t) — the fraction of pages in the segment that contains tuples of relation t.

• ICARD (i) — the number of distinct keys in index i.

• NINDX (i) — the number of pages in index i.

Independence between columns is assumed. However, they also implicitly assume a uni-
form distribution of the values — no statistics regarding the data distribution are kept. ăis
leads to rather simple selectivity estimates. We list a few them inTable 2.1. ăe article also lists
selectivity estimate formulae for column > value; column BETWEEN value1 AND value2; and
column IN subquery. We omit them for brevity.

What Selectivity S
column=value, with index i 1

ICARD(i)

column=value, without index 1
10

NOT predicate p 1 − S (p)
column1=column2, both indexed 1

max(ICARD(i1),ICARD(i2))

column1=column2, one indexed 1
ICARD(i)

column1=column2, none indexed 1
10

column IN (list l of values) min
(

1
2
, |l| × S (column = value)

)
predicate p1 OR predicate p2 S (p1) + S (p2) − S (p1)S (p2)
predicate p1 AND predicate p2 S (p1)S (p2)

Table 2.1: Selectivity estimates in System R

Situation Page Fetches

Sequential scan TCARD/P
Unique index matching an equal predicate 2Ʋ
Clustered index i matching at least one predicate S (predicates) × (NINDX (i) + TCARD)
Non-clustered index i matching at least one predicate S (predicates) × (NINDX (i) + NCARD)
Same, but small enough to đt in memory S (predicates) × (NINDX (i) + TCARD)
Clustered index i not matching any predicate NINDX (i) + TCARD
Non-clustered index i not matching any predicate NINDX (i) + NCARD
Same, but small enough to đt in memory NINDX (i) + TCARD

Table 2.2: Estimated number of page fetches in System R

ƲAlthough they donot explicitlymention it, it is clear they assume that the internal nodes of theB-tree indexes
reside in memory. ăus, there’s one page access to get the pointer in a leaf node, and one to fetch the actual page.

2.3. PostgreSQL and Other Open Source Query Optimizers 15

ăese selectivity estimates are key to devising the cost estimates listed in Table 2.2. We list
just a few. We set CPU costs = w |RSI calls|, where |RSI calls| is an estimate of the number
of tuple-handling instructions, and w is a factor weighing processing costs and I/O. |RSI calls|
is the product of relation cardinalities and the selectivity factors of the involved predicates.
Generally, the cost C = page fetches + CPU costs.

With these cost estimates for single relation scans, the optimizer can search for a cheap
join ordering, by considering many possible join trees. To bind the size of the search space to
something that is feasible to explore, some heuristics are used: SystemR limits the search space
to leĕ deep join orderings and defers alternatives with Cartesian products as a last resort. It
does so by considering the join-predicates linking the various relations together. For example,
if we have relation A joined with B, and B joined with C, with predicates that are incompatible
— i.e. they do not form a transitive closure — then (A ◃▹ C) ◃▹ B and (C ◃▹ A) ◃▹ B are not
considered. However, (A ◃▹ B) ◃▹ C and (B ◃▹ C) ◃▹ A may have very different costs, so they
both need to be considered.

ăe optimizer uses a dynamic programming algorithm, which relies on the optimal sub-
structure inherent in query tree optimization: the optimal solution to n − 1 joins is needed
to đnd the optimal solution to n joins. First it đnds the cheapest single-relation plans with
various interesting orderings. ăen, every relation is joined as an outer relation with all other
relations, giving all possible two-relation plans. ăis process is repeated n times, where n is
the number of relations. For each pass i, the i-th relation is joined as the outer relation to all
(i − 1)-relation plans. Even though heuristics are employed to prune the search space, the
number of plans checked still increases exponentially, with a complexity ofO (n2n−1).

ăemost important contribution of the SystemR optimizer, besides proving that optimiz-
ers were a viable alternative to “database programming”, is the use of statistics and cost func-
tions, coupled with a dynamic programming algorithm to devise cheap plans.

2.3 PostgreSQL and Other Open Source Query Optimizers

PostgreSQL is the most advanced open source database system. ăe project was started as a
research project by Michael Stonebraker, as “Postgres” at the time — a followup project to
Ingres [Pos08c]. We consider the source code to be of high quality and that it is easy to read,
and several articles about key design decisions have been published, such as [SRH86, Sto87].
ăus, it was a natural candidate for studying— a real implementation, withmany features and
the source readily available.

We also looked into the optimizers of MySQL, SQLite and MonetDB, but chose to focus
on PostgreSQL — because it is more feature complete, and the code was a lot easier to read
than that of MySQL and MonetDB. SQLite is quite lightweight, with subquery Ĕattening as
the most interesting feature. We did not prioritize achieving breadth in the study of imple-
mentations. ăe optimizers in the mentioned projects are also static — i.e. they do not have a
rule-based architecture. If any of the alternatives had been rule based, they would have been
more interesting to study.

Studying PostgreSQL gave us some insight of quite a few optimization transformations
that are not typically mentioned in the literature. We list some of them in Section 6.2.3. ăe
studywas somethingwe started outwith in the initial phase of the project, to have studied a real
implementation and to get an overview. However, as we progressed with the literature studies,
we realized that the algorithms and data structures used by PostgreSQL would not directly apply
whenhaving to dealwithDAG-structured query plans. ăus,we abandoned the implementation
studies to concentrate on the important differences betweenDAG- and tree-based optimizers.
None of the other systems mentioned deal with DAG-structured query plans either — we are

16 Chapter 2. Case Studies and Previous Work

unaware of anyOpen Source DBMS that do, as it is still a novel approach. Hence, it is of little
use to go into details about the results of studying PostgreSQL. It was certainly useful to have
looked into a real implementation, seeing how a query is handled as it goes frompre-processing
to plan-generation to post-processing. Also, since the transformations in PostgreSQL are hard-
coded, it was (although not bad per se) a contrast to our rule-based approach.

2.4 Rule-based Optimization

ăere are generally two kinds of optimization architectures: some are hard-wired, and some
are rule based. Hard-wired optimizers have their transformations and rules hard-coded. ăe
optimizer is then aware of all possible operators and their semantics. Addingnewoperators and
transformations could involve rewriting large parts of the optimizer. Rule based optimizers
are extensible, with a modiĖable set of optimization rules [CZ98a]. ăe architecture allows
rules to easily be added, which also enables adding new operators the optimizer was previously
unaware of. Rules can even be speciđed by the user “on the Ĕy” [PHH92]. ăe optimizer
core then knows nothing about actual operators, as it is just orchestrating rule instances and
comparing their outputs using a cost model. One of the earliest uses of a rule-based optimizer,
was Squirel [SC75], a transformation-based optimizer dating back to 1975. However, themost
referred articles on the subject are those of Starburst [PHH92] and the EXODUS-Volcano-
Cascades-series of optimizer generators [GD87,GM93,Gra95]. We describe these further in
Section 2.5, where we also describe the model we base our optimizer on.

ăere are two types of rules: those used to pre- and post-process the query, and those used
in the search phase of the optimization. Pushing NOTs down as far as possible is an example of
a pre-processing rule, and merging selections is an example of post-processing. ăese rules are
fairly simple, andmore examples arementioned in Section 6.2.3. ăey constitute just a fraction
of the total optimization time for queries with many relations.

ăe rules of the search phase determine how the search space is explored. ăus, these ob-
viously need to be treated efficiently, and when search rules are developed, one must be careful
not to cause the search space to explode unnecessarily.

2.5 Transformative vs. Constructive Optimizers

When searching for better plans, two approaches can be distinguished: transformative and
constructive.

Transformative optimizers consecutively transform the input query to an equivalent and
hopefully cheaper output plan. ăe input and output are always equivalent. ăis is a nice prop-
erty, as it enables aborting the optimizer at any time and returning the best plan so far — for
example due to a timebudget or a harddeadline. Wedescribe a few approaches in Section2.5.1.

Constructive optimizers take the goal of the query, and then rebuilds the query from
scratch — assembling one block at the time. ăese can also be classiđed into top-down and
bottom-up. We describe two approaches in Section 2.5.3.

Note that this distinction applies to the search phase of the optimization. Even though
constructive optimization is done in the search phase, transformative rules are typically applied
in the pre- and post-processing phases of the optimizer.

2.5.1 Transformative: EXODUS, Volcano and Cascades

EXODUS, Volcano [GM93] and Cascades [Gra95] are three projects by Goetz Graefe et al.,
which are successive ređnements to a rule-based optimizer generator. We describe them in

2.5. Transformative vs. Constructive Optimizers 17

terms of how the successor improves the predecessor.
With EXODUS, a database implementer deđnes a model description, which contains the

list of operators, what methods should be considered when building and comparing access
plans, transformation rules, and implementation rules, which map logical and physical opera-
tors [GD87]—for example join→ {hash join, inner loops, cartesian product}. ăemodel is then
used to generate C code, which in turn is compiled and linked with the implementer’s model
to achieve a speciđc optimizer. Rules are generally described declaratively, but can also be sup-
plemented with C code when necessary. Adding new operators and rules involved changing
the model and then generating a new optimizer. ăe most important contributions of EXO-
DUS were proving that an optimizer generator framework could work, based on declarative
rules and transformation on logical and physical algebra [Gra95].

However, the authors identiđed several limitations with EXODUS, and found it difficult
to produce efficient, production-quality optimizers [GM93]. ăis lead to the development of
the Volcano optimizer generator. ăe goals of Volcano was to be usable with existing query
evaluators and as a separate tool, and providing more efficiency in terms of optimization time
and memory consumption during search space exploration — all while remaining extensible
and permitting parallelization, use of heuristics and model semantics to guide the search and
prune bad paths early. As EXODUS, it used a model to generate code, which in turn was
linked to the implementer’s database system, as well as having a separate logical and physical
algebra. However, in EXODUS, they were treated with a suboptimal data structure, which
resulted in an inability to capture requirements about physical properties (such as ordering),
inefficient memory usage and an overhead in reanalyzing existing plans. For large queries, EX-
ODUS actually spent most of the time reanalyzing existing plans [GM93]. ăis was solved
with a dynamic programming algorithm and memoization in Volcano. Additionally, Volcano
had a more Ĕexible cost model, which delegated the comparisons to functions provided by
the implementor. ăe most important contributions of Volcano was improving EXODUS
shortcomings with more efficient algorithms and data structures, which in turn enabled more
extensibility [Gra95].

Having used the Volcano optimizer generator in two different projects, its authors iden-
tiđed additional design Ĕaws, whose remedies were the goal of the Cascades-project. Cas-
cades is not as well-published as the other architectures. We contacted Goetz Graefe and was
told [Gra95] is the only article published about Cascades, but we also found mentions of Cas-
cades elsewhere ([Bil], [ONK+95]) which suggested there were more to it. According to its
paper, it is the foundation for the optimizers found inTandem’sNonStop SQL andMicrosoĕ’s
SQLServer. It is no longer an optimizer generator, but a frameworkwhere rules are provided as
objects. Rules are no longer encoded in a formal speciđcationwhich is subsequently converted,
and can even be speciđed and generated at runtime.

[Gra95] lists several of Cascades advantages compared to Volcano. We highlight a few of
them:

• Rules as objects

• Operators that may be both logical and physical

• Patterns that match an entire subtree

• Incremental enumeration of the search space

• Optimization tasks as data structures

A rule object can be created and optionally modiđed (disabled, reconđgured, etc.) at run-
time. Rules have a name, an antecedent deđning a before-pattern, and a consequent deđning the

18 Chapter 2. Case Studies and Previous Work

substitute. ăe pattern and substitutes are expression trees. Exactly how the patterns work is
not discussed, but we imagine they are somewhat similar to the pattern matching described in
Section 5.6. Exploration is done by successively comparing the before-patterns of the available
rules, and applying the transformations of the rules that either match the input, or if a match
can be created by exploration. ăisway of incrementally applying rules on demand and contin-
uously considering where to “go next” is in contrast to Volcano’s strategy, which involved two
phases: a đrst phase that applied all transformations to generate all possible logical expressions
for a query and its subtree, with a subsequent phase that made physical plans from these and
compared them to each other. ăe exploration is governed by heuristics that avoids repeatedly
exploring the same subspace. Also, guidance-instances can be created, whose function is solely
to limit the search space. Without any guidance, the size of the search space explored equal that
of Volcano. It is important that such guidance rules do not rule out potentially optimal plans.
With sophisticated rules, the current optimization goal —such as cost and required properties
— can be considered. Rules inform the optimizer of how useful they are in the current context,
which affects the order in which the space is explored. Hopefully, this leads the exploration to
the more promising subspaces, which in turn can result in pruning the rest of the space.

2.5.2 Transformative: Optimization of DAG-Structured Query Evaluation Plans

In “Optimization of DAG-Structured Query Evaluation Plans” [Roy98], Prasan Roy presents
a few transformation rules and a transformative optimizer based on the Volcano-optimizer
mentioned in Section 2.5.1. It uses two steps. First, the operators that might be shared are
identiđed. ăe ones that should be used are then duplicated, with the duplicates reporting
their cost as 0, as it is paid the đrst time it is used. ăen, a normal tree-based optimization is
done.

In addition to the drawbacks about Volcano, Neumann identiđes some issues with the ap-
proach in [Neu05]:

• Identifying sharable operators must be done before the search phase. ăis is due to how
the search phase is done with respect to “free” operators. Without care, the planner
would only choose the free (duplicate) operators, and neglect the initial cost.

• ăe notion of multiple consumers causing no additional cost is only valid if nested loop
joins are not considered. And without nested loop joins, dependent joins and theta-joins
cannot be performed — only equijoins!

ăe second limitation is very discouraging. It severely limits the scope of the optimizer.
Even thoughMARS does not currently have nested loop joins, their importance cause this to be
a severe limitation.

Weareunaware of anyother transformative approach tooptimizingDAG-structuredquery
evaluation plans.

2.5.3 Constructive: Starburst and Neumann/Moerkotte

As mentioned, constructive optimizers determines the goal of a query, and then reconstructs
it piece by piece. ăe optimization consists of đnding cheap plans that solve subgoals, and
progress towards the penultimate goal while retaining good subplans and avoiding spending
too much time on bad ones.

2.5. Transformative vs. Constructive Optimizers 19

Starburst

We have not studied Starburst extensively, but Neumann’s model is inspired by it, so we men-
tion some important points. Starburst is the predecessor of the optimizer in IBM’s DB2.
ăe algorithm optimizes each operation in the query independently, bottom up. Low-level
plan operators (LOLEPOPs), which operate on 0 or more streams of tuples and produces 0
or more new streams, are combined into strategy alternative rules (STARs). STARs have re-
quirements its input plans must meet — for example, certain relations must be present, or the
tuples must be in a speciđc order. If current plans do not meet these requirements, additional
“glue”-LOLEPOPs may be added — such as adding a sort-operator when a certain ordering is
required [PHH92].

Neumann andMoerkotte: DAG-structured Query Graphs

In his PhD-thesis “Efficient Generation and Execution of DAG-Structured Query Graphs”
[Neu05], Dr. ăomas Neumann elaborates advantages with DAG-structured query graphs,
identiđes problems and presents his solutions, as well as a design of an optimizer. ăe work
is continued in “Single Phase Construction of Optimal DAG-structured QEPs” [NM08], in
collaboration with Prof. Dr. Guido Moerkotte. It is this model we have based our optimizer on.
We describe the model in more depth in Chapter 5, where design- and implementation details
are discussed. ăere, we also point out some differences and claim a few improvements to the
original model. In Chapter 7, we point out some limitations and issues we have not yet had
time to solve.

In short, the optimizer assigns instances of applicable rules to every node in a logical query
graph. A rule has a set of properties it requires from its inputs, and a set of properties that it
produces. ăe query’s goal is also expressed as a set of required properties, and a plan is semanti-
cally equivalent when the produced properties is equal to the goal. ăe constructive approach
has some advantages to transformative approaches when dealing with DAGs — for example,
đnding subplans with output that are share equivalent with the required input is easier. Two
expressions are share equivalent if one expression can be computed by using the other expression
and renaming the result [NM08].

Top-Down or Bottom-Up?

ăere are two approaches to constructing queries — either beginning at the top, requesting
subgoals recursively; or at the bottom, starting with the base relations (such as table- and in-
dex scans) and progressing towards the ultimate goal. In [Neu05], Neumann mentions three
advantages with the top-down approach:

• Rules aremore intuitivewhenwritten in a top-downmanner, as with a top-downparser.
ăis eases development and maintainability of the rule set.

• ăeplanner quickly learns solutions to subproblems. ăis helps establishing cost bound-
aries early on in the process, which is an important factor in reducing the search space.
[Neu05]mentions experimental results showing a 10-20% reduction of the search space
size.

• By recursively requesting plans satisfying speciđc properties (the subgoals), only sub-
plans satisfying subgoals of the top goal will be considered, as opposed to the bottom-up
approach which tries any combination.

However, the top-down approachwill consider lots of plans that are not actually possible to
execute. A substantial amount of time is spent trying to solve subgoals which have no solution

20 Chapter 2. Case Studies and Previous Work

— a problem the bottom-up approach does not have. Neumann claims that for chain-queries
with≥10 relations, >99.9% of the time is spent on unsolvable subproblems, if this problem is
notmitigated. It is easily remedied by checking if the subproblem is actually solvable. However,
the check is stillO (n) for n operators. Neumann states that≥90% of the CPU time is spent
on this check. In Figure 7.4 on page 68, a prođling run of our optimizer prototype is shown.
QueryOptimizer.GoalIsUnreachable(goal) is the name of the check in our system, in which
approximately 7%of the time is spent. Aswe explain in Section 5.5, the problem is ameliorated
by caching the answers to GoalIsUnreachable(goal). By disabling the cache, a large query
which took 4.72 seconds to optimize with caching took 13.42 seconds.

Another advantage with the bottom-up approach is avoiding a lot of cache lookups for the
same subproblems when constructing DAGs.

With the caching of the reachability-check, the differences between bottom-up and top-
downboils down to theoverheadofnumerousunneededhash table lookups. In this stage in the
project, time is spent better on other issues than optimizing the amount of lookups. ąerefore,
we settled on the top-down approach due to clarity.

2.6 Reøections

To summarize, the direction of the project shiĕed drastically when we discovered that the dif-
ferences between tree- andDAG-structured query evaluation graphsweremore profound than
we initially believed.

Aĕer having surveyed research articles about query optimization and DAGs, as well as
existing implementations, we realized we either had to start from the beginning, or to base our
work on just a few works [Roy98,Neu05,NM08] that have yet to achieve much attention and
peer review from the research community. Dr. ăomas Neumann, author and co-author of
two of them, has this to say:

“I found that it is nearly impossible to publish papers about optimizing DAGs.
ăey are usually rejected with the argument ‘already implemented in commercial
database systems’ :) ăis might explain the lack of research papers.”

In a later email he points out that “already implemented in commercial database systems”
refers to the use of temporary relations as discussed in Section 4.3.2.

In Section 2.5.2, we mentioned some severe limitations in [Roy98]’s approach that han-
dles DAGs, and that basically rules out the only real alternative to Neumann and Moerkotte’s
work. All in all, our impression is that Neumann and Moerkotte’s model in [NM08,Neu05]
is a lot more solid than that of [Roy98]. ăis is not surprising, as [Roy98] is a master thesis,
whereas [Neu05] is a PhD-thesis, with subsequentwork in [NM08]. Furthermore, it would be
unreasonable to believe that an attempt to modify and extend e.g. Cascades to support DAGs
would have yielded better results than a PhD devoted to the topic.

ăus, we have chosen to largely base the optimizer model on Neumann and Moerkotte’s
work. Chapter 5 and the rest of the report is devoted to our changes to the model and the
design- and implementation details.

3
Cost Estimation and Statistics

3.1 Introduction

ăe goal of query optimization is to đnd the best plan (or one that is reasonable close to it),
which is the cheapest one by some cost-metric. But how do we deđne “cheapest”, and how can
we be reasonably sure the cost estimates are correct? Also, the deđnition of cheapest may wary.
Oĕen, the goal is to complete the query in the shortest time possible, but this is not always
the case. Other goals may be to minimize the time used to return the đrst result sets — this is
reasonable in a search engine setting, where oĕen only the đrst few results are interesting. In
situations where the system is getting congested, the goal may be to reduce the global average
response time, for example by reducing resource usage per query to increase concurrency. Fur-
thermore, if the query is being executed on several nodes, communication costs might need
to be minimized, not only due to their latency, but also because the network connections can
become congested. Changing network links and node availability and load are a few examples
of environmental changes that should affect the plan cost calculations.

We have not had time to study cost- and statistics issues thoroughly so far. However, we
have looked into some issues, to get an overview of the most important aspects and to take
informed design decisions that do not rule out necessary functionality to get the cost- and
statistics modeling right later on.

ăemost important part is achieving a loose coupling between the optimizer, the rules and
how the costs are modeled and eventually calculated.

In Section 3.2 we describe what inĔuences the cost, and partially why it is important to ab-
stract the calculations. Section 3.3 shows some example uses of statistics and how it inĔuences
the planning process. ăen, Section 3.4 describes why a cost component makes sense, and what
we want from it. Lastly, Section 3.6 wraps up about the current status of MARS with respect to
costs and statistics.

3.2 Cost Factors

To calculate a plan’s cost, several factors are considered. Available buffer space, amount of IO
needed to fetch thenecessary pages, the probability of đnding thepage in the operating system’s
page cache, sequential vs. random reads, etc. are a few examples of factors that affect costs.

An operator, given expected input sizes and selectivities of the predicate it applies, can give
a reasonable estimate of what it needs to do its task. It can estimate the buffer sizes and the
amount of memory it needs, expected random and sequential needs and the expected size of
the temporary relations needed if operations spill to disk. However, it does not make sense to
express this as an arbitrary number “cost”. For example, if a conventional disk is replaced with

22 Chapter 3. Cost Estimation and Statistics

an SSD-disk that provides cheaper random reads, the cost is reduced. It is not the operators
individual tasks to determine the actual cost of its requested operations. We leave that to a cost
manager, which translates the needs of the operators into a cost which can be used to compare
plans.

To do this properly, we need to know what constitute the cost of an operation:

• I/O contributeswith a lot of the cost involved in execution queries. Data need to be read
from somewhere — be it hard drives or page cache — and written somewhere. With
conventional hard drives, there is also a large difference in the time it takes to perform
sequential and random reads.

If the data is too large to đt in memory, the intermediate result sets may need to be
Ĕushed to disk and re-read several times during evaluation …

• … as memory is a limiting factor. In a concurrent environment, memory usage per
database client is typically limited to prevent a few users from spending all the mem-
ory. If the result set is just a single tuple more than can be held in the available (or
permitted) memory and the result set is to be sorted or joined, external sorting must be
used [Bra03].

• CPU: “A well-tuned database installation is typically not I/O-bound.” [SH05a] When
the right mix of I/O-subsystems and memory is available, I/O latencies are no longer
the bottleneck. Stonebraker et al. points out that in such a system, memory copies are
becoming the dominant bottleneck, due to the gap in performance evolution between
CPU cycles and RAM access speed. However, not all systems have the luxury of having
abundant memory and quality I/O-subsystems.

• Communication costs are a limiting factor in distributed environments. For example,
if joins are to be evaluated with data from several nodes, the optimal join ordering can
possibly be the one that minimizes the amount of network traffic needed to transfer the
intermediate results.

ăe next section discusses how an operator can estimate parts of its costs.

3.3 Statistics and Example Calculations

Tobe able to guesstimate costs, statistics about the various relations are used. In Section 2.2, we
described how System R estimates cardinalities and selectivities — and its limitations. Since
then, a lot of effort has gone into determining how to devise and use statistics to estimate these
— without being too expensive to use or maintain. In most cases, selectivity estimates directly
affect the decision of what the cheapest plan is, so it is important to be as accurate as possible
[CR94].

First, we show some examples on how statistics are used to estimate selectivities. In Sec-
tion 3.5 we go through some issues related to how the statistics are gathered and maintained.

3.3.1 Example Calculation of Selectivity Estimation

ăe following examples are adapted from PostgreSQL’s documentation about how their plan-
ner uses statistics [Pos08a, Ch. 55]. ăey demonstrate how histograms and most common
value lists can be used — in isolation and combined. We assume familiarity with histograms
and their various representations.

3.3. Statistics and Example Calculations 23

ăe example assumes a table tenk1, which is part of the regression test database in Post-
greSQL 8.3. tenk1 has 10 000 tuples (reltuples) contained in 358 pages (relpages). ăese
statistics are stored in the system catalog, and updated occasionally during a VACUUM or ANA-
LYZE — two maintenance commands. ăey are used to estimate the real number of tuples in
the table (a countwhich is expensive tomaintain accurately), which is interpolated if the actual
page count (a count that is cheap to maintain) differs from the page count that corresponds to
the last tuple count. When performing the query SELECT * FROM tenk1 WHERE unique1 <

1000, the planner looks up the selectivity function for the <-operator, and the histogram for
the column unique1 in tenk1, which is

buckets = {0, 993, 1997, 3050, 4040, 5036, 5957, 7057, 8029, 9016, 9995}

ăese values are used to determine the selectivity of the predicate > 1000. ăe histogram is an
equidepth histogram, so selectivity is determined by locating the bucket the value is contained
in, and then count part of it and all the proceeding buckets:

S =
1

|buckets|

(
1 +

1000 − min (buckets2)
max (buckets2) − min (buckets2)

)

=
1

10

(
1 +

1000 − 993

1997 − 993

)
= 0.100697

Note that two adjacent values in the buckets-list deđne a bucket, so |buckets| = 10 even
though the length of the list is 11. With the selectivity, we can estimate the number of rows:

rows = cardinality × selectivity
= 10000 × 0.100697

= 1007

ăis was with a range predicate. What about an equality predicate? A list of common
values is used. Assume the list of the 10 most common values (MCV) and their respective
frequencies for tenk1.stringu1 are

mcv = {
(EJAAAA, 0.00333333) , (BBAAAA, 0.003) , (CRAAAA, 0.003) ,

(FEAAAA, 0.003) , (GSAAAA, 0.003) , (JOAAAA, 0.003) , (MCAAAA, 0.003) ,

(NAAAAA, 0.003) , (WGAAA, 0.003) , (FCAAAA, 0.003)

}

Also, we assume the fraction of values being NULL is 0 and the number of distinct values is
676. With the query SELECT * FROM tenk1 WHERE stringu1 = ’CRAAAA’, we đnd the value
‘CRAAAA’ in the list, so the selectivity is simply 0.003, and the number of estimated rows is 30.
But what with selectivity estimates for values not in the list? ăen we estimate the selectivity
as

S =
1 −∑

mcvfreq
distinct |mcv|

24 Chapter 3. Cost Estimation and Statistics

=
1 − (0.00333333 + 9 × 0.003)

676 − 10
= 0.0014559

ăus, we can estimate that SELECT * FROM tenk1 WHERE stringu1 = ’foo’ will return
10000 × 0.0014559 = 15 rows.

For non-unique columns, there will usually be both a list of most common values and a
histogram — and the histogram disregards any values listed in the most common values. Se-
lectivity estimation for a range predicate then uses both the values found in the MCV and the
selectivity determined by the histogram damped by the fraction of histogram values not in the
MCV:

S =
∑

(Srelevant common values) + Shistogram × histogram fraction

In cases where some values are signiđcantly more common than others, the histogram fraction
damping factor will decrease correspondingly.

ăe query SELECT * FROM tenk1 WHERE stringu1 = ’foo’ AND unique1 < 1000

contains two predicates, whose selectivities we have estimated to Sstringu1 = 0.0014559 and
Sunique1 = 0.100697. ăe selectivities are assumed to be independent, so the selectivity of
stringu1 = ’foo’ AND unique1 < 1000 is thus SAND = Sstringu1 × Sunique1 = 0.0001466.
Without correlated histograms, that is the best one can do.

ăese examples also illustrate the computational costs involved with statistics. For every
predicate on every relation, histograms and lists of most common values are involved in esti-
mating selectivities. By increasing the size of the histograms and list of most common values,
the accuracy of the estimates, the computational effort, space- and maintenance cost increases.
ăe challenge is đnding a sweet spot where the performance advantages is not severely offset
by the costs.

Section 5.5.4 describes where in the process such computations would occur.

3.4 Cost Component

We have not yet had time to deeply study how a cost component should work, but we have
given some thought into how we want to interface it.

3.4.1 Plan Generator Interface

First and foremost, the optimizer and the rules used do not care why a plan is better than an-
other, just if it is. ăis makes the rules simpler, and the cost estimation more Ĕexible. For
example, it can be aware of environmental changes, as mentioned in the introduction. List-
ing 3.1 shows the interface the optimizer expects a plan’s cost to implement. At this point, a
real cost component has not been developed, and just a simple one described in Section 5.5.3
is currently used. It uses a single number to model the cost. However, the interface remains
the same.

Listing 3.1: Planner’s cost model interface.
1 public enum CostRelation {
2 Better , Worse, Equal , Unknown
3 }
4
5 public interface ICost {
6 CostRelation Compare(ICost other) ;

3.5. Statistics Gathering 25

7 CostRelation CompareTotal(ICost other) ;
8 }

CostRelation’sUnknown-member and ICost’sCompareTotalwarrant an explanation. When
the cost component cannot decide if a plan is always better than another, for example because
one uses less memory and more I/O, it returns unknown. ăe decision is then leĕ to the plan-
ner of whether or not to keep the plan. Oĕen, both (sub)plans will be kept and the đnal plan
decided uponwhen the optimization is done. When the planner calls CompareTotal, however,
the cost component cannot returnunknown. ăis is requested at the endof the planning phase,
when the planner has a small amount of plans it needs to choose one from. For example, in the
search phase, Comparemay return Unknown because the one plan is cheaper in some regards, but
uses more memory than the other. CompareTotal, when having to pick one of the two plans,
can decide that since the memory is available, the đrst plan is chosen — or vice versa.

3.4.2 Rule Interface

Above, we presented the cost component interface for the plan generator. However, the rules
also need some kind of interface to the cost component to be able to model the cost by in-
putting the costs of the operators constructed. ăis interface is not as formal as the former,
since the cost model and rules are much more interdependent. While the optimizer only cares
about how to compare plans, the rules must be coded to utilize the cost model and the cost
model must support the modeling needs of the rules. However, it still makes sense to create an
interface between the rules and cost model that is as clean as possible.

We propose a cost model that takes all the cost factors previously mentioned into consid-
eration, by allowing all rules to model its operator costs specifying the expected cost in each
dimension. Even if not all of them are used to decide which plan is best in the end, they are
available and may be used later. ăe cost of maintaining them is minimal — we propose to
model each cost factor as a number.

ăe cost class could have a constructor with the following signature:
1 public Cost(int cpu , int sequentialReads , int randomReads, int memory, int network)

By overloading the + operator for the Cost class, a rule can then easily specify the costs of a
plan. For example, a selection rule, requiring no I/O could then specify its cost as such:

1 Costs = inputCosts + newCost(Cardinality * PredicateCost , 0, 0, 100, 0)

3.5 Statistics Gathering

ăe main problems with statistics are gathering and keeping them up to date. ăese are issues
we have not had time to look deeply into, but we have found one interesting approach we đnd
worth mentioning.

ăemost common technique involves random sampling [CMN98]. ăis has been studied
extensively and has not got too much to do with query optimization.

However, in [CR94], Chen and Roussopoulos proposes an interesting approach where
“ąe real attribute value distribution is adaptively approximated by a curve-Ėtting functionusing a
query feedbackmechanism.” ăis approach is interesting, because it is less prone to choosing bad
random samples, and more likely to converge to fairly accurate estimates on common queries.

Without having studied this in depth, we believe that this would contribute unacceptable
overhead if done on every query. ăus, it could be the task of an optimizer to schedule when
and where such operators should be added. ăis is something we would like to look more into
during the master thesis the next semester.

26 Chapter 3. Cost Estimation and Statistics

3.6 Statistics and MARS

MARS does not currently store any statistics, and the assemblies we were provided with only
contained a simple FileReaderScan. As such, we are in a position where we can suggest what
statistics should be made, and how they should be gathered.

However, this has been outside the scope of this project — partially because we have not
been providedwith realistic data-, index- and query sets. Consequently, it is difficult to suggest
anything else than general purpose approaches.

ăus, deeper studies of statistics have been deferred to the master thesis the next semester.
However, by looking into how some systems use and gather statistics (as described previously
in Section 3.3 and Section 3.5), we have an idea of what to look into.

4
DAG-Structured Query Graphs

4.1 Introduction and Previous Work

ăe most common way to represent query graphs is as tree structures. Tree structured query
evaluation plans are easier to optimize and execute than DAG-structured plans, but also less
Ĕexible. With trees, output of one operator can just be input to a single parent operator. Con-
sequently, intermediate results cannot be reused, which is a major limitation.

SinceMARS supports evaluation of DAG-structured query evaluation plans (DQEPs), and
not that much work on optimizing them already exist, we wanted to make sure we laid out the
design of something that can be extended for DAG support later on. As mentioned in Sec-
tion 2.6, we have based most of our work on a PhD-thesis by Dr. ăomas Neumann. Even
though what we have designed so far does not have full DAG support, basing the design on
Neumann’s DAG optimizer makes sure it can be extended to support it. ăis chapter con-
tains explanations of advantages and difficulties with DAG-queries, with many references to
hiswork. It serves as a foundation to the topics dealt with in the subsequent chapters—design,
implementation and rules.

We start with a motivating example in Section 4.2. Section 4.3 describes some of the chal-
lenges with DQEPs, while Section 4.4 discusses share equivalence.

4.2 Motivation

Using DQEPs introduces many challenges compared to those that are tree-structured, so a
motivating example to see that the extra effort is worth it is warranted.

A multi-query is a composition of multiple queries, where every single query returns its
own result set. Typically, when multiple queries are executed, they are executed in isolation.
Whether they are executed serially or in parallel does not matter, as they are unaware of each
other and the partial results of the other queries. Sharing is largely limited to locality in time
with respect to page caching.

Consider for example the query shown in Figure 4.1. It is a search for “wall-e” on Best-
Buy.com, which is backed by fast’s ESP®. Knowing that ESP® does not support DAGs, it is rea-
sonable to believe that in order to present the results shown in the đgure, the query is actually
multiple smaller queries. We do not know exactly how the search is evaluated, but present an
approach that is not unreasonable, and then how it could be performed more efficiently with
DQEPs. We present two example evaluation strategies, where we have taken the liberty to
deal with some imaginary operators to keep the example simple. ăe đrst example uses simple
queries, and the last example uses DQEPs.

28 Chapter 4. DAG-Structured Query Graphs

Figure 4.1: Example of search that results in multiple smaller searches

First a query for “wall-e” returns a list of all results that has anything to dowith “wall-e”. ăe
results, which are just item pointers, are used to determine interesting categories (collectively
called “facets” (e.g. “Shop Category”) and “facet values” (e.g. “Music”) in search engine lingo)
to show results from — such as video games and movies. ăen, for each interesting category, a
search is performed to đnd the three most relevant hits for the input query for that category.
ăis may seem excessive for the “wall-e”-search that only yields 21 results, but searching for
“dvd” yields 100319 results— and iterating over all of them just to put the three most relevant
results into each category is too expensive.

In Figure 4.2, we show an imaginary DQEP which reuses partial results. First, “wall-e” is
looked up in the full text indexes. ăe result is a list of pointers. ăese pointers are then used
by a “facet”-operator which returns a list of facet values and their respective pointers — for
example music=[1,2,3]. ăe result of this operation is then sent to an operator that aggregates
the counts of each facet value, and to an operator that đnds the three most relevant results for
each of them. ăen, the output is joined with the full result data. ăis results in two result sets
— a list of relevant facets values (with counts), and a list of relevant results for each of them.
ăese two result sets can then be combined to present the result page shown in Figure 4.1.

Index
Lookup

Facets

TopAggregate

Join

Full
documents

Figure 4.2: Imaginary DAG-structured Query Evaluation Plan

4.3. Challenges 29

.
.A .D

.◃▹

.◃▹.◃▹

.◃▹

.◃▹

.B .B .C.C

(a) Join tree
.
.A .C.B .D

.◃▹

.◃▹

.◃▹ .◃▹

(b) Join DAG

Figure 4.3: Two equivalent join graphs

4.3 Challenges

DQEPs are inherently more difficult to deal with than their tree-structured counterparts. In
this section, we describe why đnding the costs and evaluating the queries aremore challenging.

4.3.1 Lack of Optimal Substructure and Cost Estimation

Optimizers dealingwith trees typically employdynamicprogramming- andmemoization-techniques.
ăese rely on an optimal substructure to combine optimal solutions of sub-problems to achieve
an optimal solution. While tree-structured QEPs have this property, DAG-structured do not.
For example Ʋ, consider the query A ◃▹ B ◃▹ C ◃▹ B ◃▹ C ◃▹ D. Figure 4.3a shows a possible
solution where the optimizer đrst đnds that (A ◃▹ B) ◃▹ C and B ◃▹ (C ◃▹ D) are partial opti-
mal solutions, which are then combined. If the sub-optimal partial solutions A ◃▹ (B ◃▹ C) and
(B ◃▹ C) ◃▹ Dhadbeen considered, the common sub-expression (B ◃▹ C) could have been shared,
resulting in the plan in Figure 4.3b. Consequently, an optimal DAG cannot be constructed by
simply combining optimal partial plans.

ăe cost of computing intermediate results is only paid once, even though the result is
used by several operators. ăis fact must be captured by the cost model that compares plan
alternatives, so that the cost of (B ◃▹ C) is only counted once even though it is used by two
parent join-operations. Reading it n times is not free either, but at least not n times the cost.
[Neu05] describes several algorithms that deal with this problem, but they are too complex to
explain here, as we have not implemented DAG-costing ourselves.

4.3.2 Runtime System

Evaluating DQEPs is a lot more involved than evaluating tree-QEPS. With trees, the output
is just sent to a single operator, so the output can be forgotten as soon as it has been sent.
However, withDAGs,multiple operators can receive the output—andwith an iteratormodel,
they may not necessarily request the data in an orderly fashion. One operator may even Ėnish
processing the output before another one has started — and the output may not necessarily đt
in memory.

ăis is not really an optimizer issue, and has already been implemented in MARS.
In [Neu05], Neumann identiđes four approaches:

1. Transforming the DAGs to trees. ăis defeats the purpose of having DAGs in the đrst
place.

2. Only share output frommaterializingoperators. ăis addsno extra overhead, but severely
limits the sharing opportunities.

ƲExample adapted from [Neu05]

30 Chapter 4. DAG-Structured Query Graphs

3. Use temporary relations.

4. Push output into operators instead of having them pull.

ăe third alternative can easily be identiđed in current commercial implementations. For
example, the plan generated by SQL Server 2008 for the query in Listing 4.1 is shown in Fig-
ure 4.4. Sharing of the temporary relation is triggered by the WITH CUBE-construct, which
makes SQL Server produce several combinations of the groups [Cor08]. ăe đgure has been
modiđed to make it đt on a page, and to highlight the two operators that share partial results.

ăe fourth alternative, pushing output, is what MARS uses, and what Neumann concludes
is the most fruitful approach. Its details is outside the scope of this project.

Listing 4.1: Sample query resulting in a shared temporary relation
1 SELECT s.CompanyName, c.CategoryName,COUNT(p.ProductID)AS Count FROM Products p
2 JOIN Suppliers s ON p.SupplierID = s . SupplierID
3 JOIN Categories c ON p.CategoryID = c .CategoryID
4 GROUP BY s.CompanyName, c.CategoryName
5 WITHCUBE;

Figure 4.4: Example Plan generated by SQL Server 2008 sharing a temporary relation

4.4 Share Equivalence and Common Subexpressions

Two expressions are share equivalent if one expression can be computed by using the other expres-
sion and renaming the result [NM08]. It is used to detect if the same operations are performed
twice in a plan — and should have its cost counted only once. ăe property is also used by
the plan generator when checking if a subproblem has occurred before. It is unusual to see
exactly the same subproblem twice in a query, but share equivalence is sufficient to share the

4.4. Share Equivalence and Common Subexpressions 31

partial results. However, we have not currently implemented the share equivalence check, as
explained in Section 5.5.5— therefore, we currently only getDAGs as output when exactly the
same subproblems occur.

In [NHM05], it is shown that introducing commonsubexpression eliminationmakes the
(comparatively) simple problem of ordering selections and maps NP-hard. In [NM08], it has
been argued that this suggests that in a DAG-context, the decision about reusing intermediate
resultsmust bemade by the plan generator. However, identifying andusing identiđed common
subexpressions are separate issues [RSSB00].

Exploiting share equivalence and common subexpressions are on the list of subjects to look
more deeply into the next semester.

32 Chapter 4. DAG-Structured Query Graphs

5
Design and Implementation

5.1 Introduction and Goals

In this chapter, we present the design of our optimizer. We start out by giving a high level
picture of its design, before we delve into inner workings and implementation details for each
step. First, we go over our design goals for the query optimizer:

1. Extensibility

(a) Support for arbitrary operators

(b) Support for arbitrary cost models for operators

(c) Support for arbitrary pre- and post-processing.

2. Clean design and implementation, exploiting what object-oriented programming gives

3. At least future support for DAG-structured query plans

4. Efficient plan generation

Extensibility was the most important goal with the project. ăe optimizer should have
support for arbitrary operators, meaning that it should be able to add optimization rules for
operators added aĕer the optimizer was originally designed. To achieve this, the optimizer
cannot know anything speciđc about the operators, but uses rules created by the operator im-
plementer instead.

Furthermore, different operators can have very different cost models. ăe operator imple-
menter should be able to specify the cost model (e.g. how costs increase with tuple size), and
have the optimizer adhere to it. Custom rewriting steps should also be supported as this can
be useful in speciđc uses of the optimizer.

We saw it as more important to come up with a good architecture and a clean design, than
to implement as much functionality as possible. ăerefore, we have only implemented rules
for đle scans, join and selection and put more focus on designing the optimizer core.

ăe rationale for supporting DAG-structured query plans was given in Section 4.1.
Efficiency has not been prioritized. Clearly, design decisions that prevents efficient exe-

cution must be avoided, but we have not delved into optimizing the implementation — for
example, we have implemented a naïve pattern matcher, but with its declarative interface, it
can be replaced with an efficient state machine generator later on.

34 Chapter 5. Design and Implementation

5.1.1 Testing

Testing is an important part of soĕware development and needs to be carried out to make sure
what is being developed works as expected. ăis is certainly true for our optimizer as well.
Important topics include:

Optimization results. Given the constraints of the query and search space (only leĕ-deep
plans, for example), the optimizer should produce the optimal plan.

Time spent optimizing. ăe optimizer should not spend signiđcantly more time than ex-
pected to optimize a given query.

Dependency injection. An important enabling factor to thoroughly unit test, is to have clear
dependency boundaries. Being able to easily mock and stub depended-on components
eases testing.

To make sure that our optimizer works as expected, we have employed automated testing
by using the NUnit test framework [NUn08] and have implemented several automated tests.
ăe tests create a query to be optimized programmatically and then invoke the optimizer. Af-
terwards, they verify that something bad did not happen (e.g. Exception) or that the resulting
query is the optimal one. ăe tests have also been used to generate the results found in Sec-
tion 7.

As an example, we have included the code for one of the plan generator tests in SectionA.6.
Test coverage has not been highly prioritized so far, though.

5.2 The Big Picture

As mentioned in Section 1.2, query optimization consists of several steps, of which each may
consist of several phases. We have focused on the rewrite and planning steps of the process, and
not on the parse, analyze and execution steps. Nor have we focused much on the “housekeep-
ing” procedures involved in query optimization, such as plan caching and invalidation. Such
components depend heavily on the run time system, and is subject to further work when we
start integrating our optimizer with MARS. As such, Figure 5.1 shows the parts of the query
optimizer that actually optimizes the query, where our focus has been.

5.2.1 Pre-/post-processing vs Plan Generation

ăe unoptimized query enters the optimizer in the upper edge of the đgure, going straight
into the pre-processing step. We have chosen to call the rewrite steps pre- and post-processing
as they happen before and aĕer the main step: Cost-based plan generation. ąe distinction be-
tween pre-/post-processing andplan generation is a very important one. While pre-/post-processing
is transformative and linear, plan generation is constructive and combinatorial. In otherwords,
pre-/post-processing applies matching rules successively, generating a (mostly) linear chain of
equivalent query graphs. It may generate several equivalent, rewritten plans, but the number
will be far less than what plan generation does. Plan generation searches for the cheapest plans
by combining operators in many different ways, resulting in possibly many millions of smaller
plans that are retained in memory, all sub problems of the complete query.

Since theplan generation step ismore computationally andmemory intensive thanpre/post-
processing, this should motivate us to try and do as much as possible in pre-/post-processing
and only do what is strictly necessary in the plan generation step. Adding unnecessary search
rules to the plan generation step will increase the size of the search space unnecessarily and

5.2. ąe Big Picture 35

Query Optimizer

Transformative
Rules (post)

Post-processor
Graph Matcher

Orderings

Pre-processor
Graph Matcher

Planner

1. Preparation
2. Search Phase

3. Reconstruction Cost Model

Constructive
Rules

Transformative
Rules (pre)

Planned
Query

Rewritten
Query

Rule
invocations

Rule
invocations

Rule invocations/
Plan Requests

Cost
comparisons

Cost
modelling

Orderings

Query

Optimized
Query

Figure 5.1: Query optimizer overview.

increase memory usage and query optimization time. However, optimization strategies/rules
that need to have costs modeled will usually have to be included in the plan generation step.
For most queries, it is expected that the bulk of the time will be spent in the plan generation step.

5.2.2 Optimization Steps

In the pre-processing step, transformations like view Ĕattening or predicate push-down or
pull-up [LM94] is carried out. Rewrites are performed by applying transformation rules where
the before-pattern match a subgraph of the operator graph.

Aĕer pre-processing, the operator graph is passed on to the plan generation step. Plan
generation is the step that we traditionally perceive as query optimization. It substitutes phys-
ical operators for logical ones (e.g. HashJoin for Join), reorders operators, enumerating many
plan alternatives, all the way evaluating and pruning them using the cost model. Internally, the
plan generation step consists of three phases: (1) preparation, (2) search and (3) reconstruc-
tion. ăepreparationphaseprepares for constructive plan generation. It analyzes the operator
graph and instantiates applicable constructive rules and conđgures them. ăis includes looking
up the possible useful access paths for the query.

ăe logical operators in the query are also examined to determine the logical goal of the
query, which is what our construction based optimizer uses as its starting point. ăe goal is
expressed as a query goal property set. Examples of properties in this set include “attribute X
available” and “operator X applied”, but can be modeled to express anything. Each instanti-

36 Chapter 5. Design and Implementation

ated rule also haveRequired and Produced property sets which are also determined during this
phase. Property sets are explained in Section 5.5.1.

ăe search phase is the heart of the optimizer and is where the actual cost-based planning
is performed. A top-down, recursive strategy is used where the constructive rules controls the
direction of the search. Basically, solutions to subproblems are combined into solutions of
larger problems and đnally the whole query, but in a top-down fashion. MemoizationƲ is used
to avoid duplicate work and cost dominated plans are pruned along the way.

Aĕer the search phase has determined the best plan, the reconstruction phase translates it
back into the node structure used by the pre-/post-processing steps. ăis is carried out recur-
sively by the rules.

As Figure 5.1 illustrates, the cost model is an external component and not internal to the
planner. Both the rules and planner have a well-deđned interface to the cost-model, which
allows for custom and extensible costmodel implementations. To keep track of different plans’
useful orders (i.e. sorting), an ordering component will be used, but this is not implemented
or designed yet, but we have a plan for it, see Section 5.5.2.

Finally, the planned query ispost-processed. ăis is similar to pre-processing, but on phys-
ical algebra and typically, other types of rewrites are performed. Examples include merging of
successive selection and map operators.

5.3 Node Structure

ăe optimizer needs to work with query graphs in memory, and therefore needs a data struc-
ture to model such graphs. We considered directly operating on the graph of operators im-
plementing the IOperator interface found in MARS, but abandoned this since we wanted to be
able to extend each node in the graph by custom properties needed in optimization. If we were
to use the classes from MARS, we would need to extend each of the different operators, which
would not be very extensible nor maintainable. Instead, we implemented our own Node class
to model the graph, shown in Listing 5.1. Using a separate class also makes it easier to test the
optimizer separately from MARS.

ăe propertyOperatorType stores the type of theMARS operator this node originated from,
while the Rules list holds references to all rules that was instantiated for this node during the
plan generation preparation phase. Parents andChildren stores lists of the parents and children
nodes of this node. Finally, the dictionary Properties allows us to store arbitrary properties in
the node, identiđed by name. We also implement a C# indexer (basically we overload the []
operator) so we can access the properties like so: someNode[”Property”].

Listing 5.1: Node class (simpliđed, some code omitted)
1 public class Node {
2 public Type OperatorType { get ; set ; }
3 public List <IProducerRule> Rules { get ; set ; }
4 public List <Node> Parents { get ; private set ; }
5 public List <Node> Children { get ; private set ; }
6 public Dictionary < string , object> Properties { get ; set ; }
7
8 public object this [string name] {
9 get { return Properties [name]; }

10 set { Properties [name] = value ; }
11 }
12 }

Ʋăis is not a misspelling, the namememoization comes frommemo.

5.4. Pre- and Post-Processing 37

As it looks now, when a query is received from MARS, it will be handed to the optimizer as
an IOperator graph. ăeoptimizerwill have to traverse this graph from the root and translate it
into a graph ofNodes. OperatorTypewill be set, parent and children relationships retained and
all readable properterties will be copied into the Properties dictionary. When the optimization
is complete, theNode graph will be translated back to an IOperator graph.

At this stage, we have not integrated the optimizer with MARS, so this process is subject to
change.

5.4 Pre- and Post-Processing

Pre- and post-processing is mainly about query rewriting, but may also perform other tasks,
like tagging the operator graph with information to be used later, for example to speed up the
plan generation step. In thepre-processing step, transformations like viewĔattening, subquery
merging/Ĕattening, predicate push-down or pull-up [LM94] or different join transformation
(like ANY/EXISTS → JOIN) is carried out. Other transformations that are “always smart
to perform” are also carried out, like our Trim-Sort merge which we present in Section 6.2.2.
Transformations removing unnecessary nodes can also be useful, as it reduces the running time
of plan generation. Pre-processing operations that tag the graph nodes for later use in plan
generation can also be employed.

Pre-processing does not necessarily result in a completely linear chain of transformations,
as rewrite rules can generate several semantically equivalent operator graphswhichdiffer greatly
in optimal cost aĕer plan generation. As [Neu05] explains, supporting such rewrite alterna-
tives poses a challenge. Each alternative could be provided to the plan generator for full plan
generation, but this is inefficient. Each alternative will probably overlap fairly much, which
means that much double plan generation work will be performed. [Neu05] suggests that the
best approach is probably to have the rewrite steps during pre-processing not generate com-
pletely new operator expressions, but annotate parts of the existing expressions with alterna-
tives. ăe data structures and algorithms in the current design do not support this, but we
will look into extending the Node class to be able to express it. ăe preparation phase of plan
generation will also need to be slightly extended.

Post-processing is similar to pre-processing, but on physical algebra and typically, other
types of rewrites are performed. Examples include merging of successive selection and map
operators, group-by push-down and our Trim-Sort merge may be applied again. Optimiza-
tions that does not need cost modeling and can be done independently from plan generation,
should be considered for inclusion in pre- or post-processing to keep the search space size in
plan generation down.

Only small parts of the pre- and post-processing steps (one rule and limited graph match-
ing) have been implemented so far, so time will show if we need to alter the design presented
here.

ăe processing is driven by a collection of rules that declares a Pattern it is looking for in
the operator graph. For transformation rules, one may look at this pattern as the leĕ-hand
side (LHS) of a production, where the right-hand side (RHS) is the output when the rule is
invoked. Transformation rules usually transform the query from one form to another, equiv-
alent and “better” form. ăe rule does not need to transform the query graph — it may only
add some information to it.

When the query optimizer đnds that the pattern declared by a rule matches a part of the
operator tree, it will invoke the rule with the context of the match (PatternMatch). We could
have chosen to express the rules as productions, but instead chose to make all rules expose
a Fire method which the optimizer calls when the rule is invoked, close to what was done

38 Chapter 5. Design and Implementation

in Startburst [PHH92]. ăis allows us to write more expressive rules that can reason about
the match found and take the appropriate action. ăis way, non-transformation rules can be
implemented in the sameway as transformation rules— they just add information to the graph
instead of altering it in the Firemethod.

ăe interface for transformation rules is shownbelow. For an explanation of how to express
patterns and what PatternMatch is, see Section 5.6 on graph matching.

Listing 5.2: ITransformationRule interface
1 interface ITransformationRule {
2 AbstractNodeMatcher Pattern { get ; }
3 void Fire (PatternMatch match) ;
4 List < string> DependsOn { get ; }
5 bool Iterative { get ; }
6 }

We recognize the need of someway of controlling the order of the applied transformations
if multiple matches are found. At the same time, we want as few dependencies between the
rules as possible. ăerefore, each rule is allowed to expose a DependsOn property, listing the
rules that should be run before this rule. At startup, all rules are topologically sorted by the
optimizer and serves as a foundation for rule invocations.

Each rule may be appliedmore than once. For example, a rule merging two adjacent nodes
may be run twice to merge three adjacent nodes. If the rule returns true for Iterative, the
optimizer will run this single rule until the graph stabilizes.

ăeplan is to have the optimizer apply rules successively until the graph converges to a đnal
stable result. ăis makes it easy to implement rules, but may not yield the best running time,
and we must be careful not to get in a “ping-pong” situation where the graph is transformed
back and forth. ăerefore, we plan to invest some time in studying [PHH92], which divides
the rules into multiple classes that are applied as units. Rules can also choose to invoke other
rule classes as part of their execution. ăis will probably yield better performance, but still, it
is probably the plan generation step that will take the bulk of the time anyway.

5.5 Plan Generation

ăe design of the plan generation step is based on the work in [Neu05] and [NM08], and
many of the design principles described in this section are close to what is described in these
two works. Instead of repeatedly citing these two works, we point out when our design differs
signiđcantly from theirs. However, we claim to have produced a few improvements to the
design. We summarize themost important ones here, and đll inmore details in the appropriate
sections.

Leĕ-deep join enumeration. ăe implementation of joins in the works above only considers
bushy join plans. To show that the design is extensible, we wanted to implement leĕ-
deep plan enumeration. ăis is currently working and (unsurprisingly) performs better
in terms of time spent optimizing, but will result in suboptimal plans. See explanation
in Section 6.3.6

Caching of unreachable plans. Oĕen, the optimizer is asked to produce a plan that is not
possible to create. In the works above, it is suggested that the Filter property should al-
ways be used to đnd such cases. We propose to cache the result of the đlter check in the
memoization table for better performance. Quick performance tests indicate that for
a query with 9 relations, enumerating bushy plans, this yields a performance improve-
ment from 13.42s to 4.72s. See explanation of Listing 5.10.

5.5. Plan Generation 39

Transformation rules. We have added transformation rules to enable pre-/post-processing
and query rewriting. See Section 5.4.

Nicer implementation of BitSet (property set). In the works above, property sets are only
viewed as bit sets. We have implemented a property set that behaves like a set of string
(nicer to work with and debug), but still performs well and offer compact bit mask stor-
age. ăis is described in Section 5.5.1.

Visualization of query plans. We have implemented query plan visualization. ăe result can
be seen in Section 7.3.

Managed implementation in C#. Our implementation is in aC#—amanaged language, fo-
cusing on an extensible and clear implementation, utilizing features such as attributes
and interfaces.

Dynamic rule discovery. Wehave added the rule bindermechanism for dynamic rule loading
by the optimizer, as described in Section 6.1.

Refactored interfaces. Some of the rule interfaces have been refactored (e.g. IProducerRule)
to allow for cleaner implementation. See description under Section 6.2.1.

We also have more improvements we have not had time to implement yet, see Section 7.2
and Section 8.2.

In the plan generation phase, each rule constructs one part of the query. Each rule usually
represents one logical operator, but does not have to — it can be used to construct more than
one operator (e.g. Join, which can create the different join operator implementations). Each
rule appliance creates a plan that is a solution to a subproblem of the whole query, and đnally
the complete query. Each plan can have a number of subplans, solving a subproblem of the
plan’s problem (actually, its input).

ăe code below shows the main method of the plan generator, somewhat simpliđed. It
closely resembles what was described in Section 5.2. First, a new BitSetManager is created
to handle the property sets for this query. ăen rules relevant to this query are initialized,
goals determined (if this is a multi-query), and base plans added, all as part of the preparation
phase. Next, the search phase starts with the call to GeneratePlans, before the đnal plan is
reconstructed and returned.

Listing 5.3: Plan Generator main method, simpliđed
1 public Node Optimize(Node query) {
2 // Create a new BitSetManager for this query
3 BitSetManager = new BitSetManager () ;
4 // Find and instantiate rules .
5 InitializeRules (query) ;
6 // Determined logical goals of query
7 DetermineGoals(query) ;
8 // Instantiate the memoization table
9 plansCache = new Dictionary <BitSet , PlanSet >() ;

10 // Make plans for leaf −nodes, i . e . scans .
11 InitializeBasePlans () ;
12 // Go plan !
13 GeneratePlans () ;
14 // Convert plans back to nodes .
15 Node đnalPlan = MakePhysicalPlan () ;
16 return đnalPlan ;
17 }

40 Chapter 5. Design and Implementation

To be able to illustrate how the plan generation works, we now introduce a simple query
whichwewill use throughout this section. It is a simple join of two relationswith a selection on
an attribute of the second relation, expressed in SQL below. Figure 5.2 shows how this query
might be passed to optimizer for optimization. ăe topmost operator isMARS’ query operator.

1 SELECT * FROMA
2 JOIN BONA.a1 = B.b1
3 WHEREA.a2 = 8

.
.Aa1,a2

.Q

.σA.a2=8

.◃▹A.a1=B.b1

.Bb1,b2

Figure 5.2: Sample query.

In this simple query, theonly optimizationpossible is probably topush the selection through
the join, provided that the predicate is not very expensive or the join very selective. Still, it
serves as a good example.

5.5.1 Property Sets

During the plan generation phase, the plan generator generates many plans as solutions to sub-
problems. In some way, it needs a way to annotate these plans with what they actually produce
— attributes available, ordering, operators applied, relations involved and so on. ăis could be
solved as a list of operators applied and attributes available, but this is not very extensible. In-
stead, we use themodel proposed in [Neu05], where it ismodeled as a set of general properties.
Examples of properties are “attribute X available” and “operator Y applied”, they can be used
to express anything. ăe plan generator does not know anything about their meaning, it only
cares about satisfying them during plan generation. It is up to the rule implementer to deđne
their meanings.

Properties are also key to how the operator uses rules to construct plans. As our optimizer is
constructive, different combinations of rule instances are used to produce plans with different
properties. Each rule declares several property sets: A Produced set and one Required set for
each input (1 for rules representing unary operators, 2 for binary). A rule usually produces that
itself was applied and requires the attributes it operates on. ăe required and produced sets for
the example query in Figure 5.2 are given in Table 5.1. For example, the join requires {a1} for
its leĕ input and {b1} for its right, since the join predicate includes these two attributes. It
produces {◃▹}, that itself was applied.

ăe global query goal is the property set the đnal, complete query plan should satisfy and
serves as the starting point for plan generation. It is computed as the union of the produced
sets of all the logical operators in the query. In the example query, all operators are logical, so
the global query goal = {a1,a2,b1,b2,◃▹,σ}.

5.5. Plan Generation 41

Id Type Requires Produces
1 FileReaderScan:A a1,a2
2 FileReaderScan:B b1,b2
3 Join L:a1 R:b1 ◃▹
4 Selection a2 σ

Table 5.1: Instantiated rules for query in Figure 5.2 and produced/required sets.

Implementation

[Neu05] does not explain how to identify the different properties in a concrete implemen-
tation. We propose to identify them by string constants, as this allows for arbitrary expres-
siveness. For example, properties for attributes and operator applied would translate to ”AT-

TRIBUTE_X” and ”APPLIED_Y”.
As such, eachproperty setwill be a set of strings. Eachplan, aswell as all ruleswould include

such sets. As the plan generator will produce potentially millions of plan, it is desirable that
the property set is as compact as possible to consume little memory. A set of strings is certainly
not compact. Also, as we will see, the search phase performs a lot of set operations like union
and intersection on these sets. ăerefore, we should optimize for this.

A key observation is that the universe of possible properties are determined before the
search phase begins. As [Neu05], we therefore assign a bit to each possible property and sim-
ply store the property sets as bit masks. ăis allows us to store 8 properties in just 1 byte. See
Section A.5.1 for details. Further, this allows for very fast set operations, as set intersection
is simply a bitwise AND between two property sets, probably performed in a single CPU in-
struction. See Listings A.12 and A.13 in Section A.5.1 for code snippets showing how the
intersection and subset operators are implemented.

ăe BitSet struct is the implementation of a property set (BitSet because of the storage
mechanism). Structs in C# are stored directly on the stack, not on the heap with a pointer
to it, allowing for faster access. Listing 5.4 shows the interface to the BitSet struct. We đnd
most of the usual operations for sets, including operators for set equality/inequality, union,
intersection and subtraction. ăeOr method allows for in-place union.

Worth noting is the Walk method that returns a sequence of BitSets. It returns all per-
mutations of the properties in the current BitSet and is used by the join rule, as we will see
later.

Listing 5.4: BitSet struct (simpliđed, interface only)
1 public struct BitSet : ICloneable {
2 void Add(string property) ;
3 bool Contains(string property) ;
4 void Remove(string property) ;
5 bool Overlaps (BitSet other) ;
6 static bool operator ==(BitSet a , BitSet b) ;
7 static bool operator <=(BitSet a , BitSet b) ;
8 static BitSet operator |(BitSet a , BitSet b) ;
9 static BitSet operator &(BitSet a , BitSet b) ;

10 static BitSet operator −(BitSet a , BitSet b) ;
11 void Or(BitSet other) ;
12 IEnumerable<BitSet> Walk() ;
13 }

To conserve space, each BitSet does not store the mapping string → bit index. ăat is
responsibility of the BitSetManager class. How the Add, Contains and Remove method use it

42 Chapter 5. Design and Implementation

is shown in Listing A.10 in Section A.5.1.
BitSets are used as keys in the memoization table, and as such they also implementGetH-

ashCode.

BitSet Minimalization

Another responsibility of the BitSetManager is BitSet Minimalization. Oĕen, declared bit
properties turns out to never be produced or never required. Such properties are removed.
Further, if some properties are always produced together, they are merged into a single prop-
erty, saving memory and reducing the search space. We have only implemented the latter, and
the code can be found in Section A.5.2.

5.5.2 Orderings, Groupings and Other Interesting Properties

When dealing with sub-plans, there are other properties that need to be considered than their
raw cost. Costs are just half the story — properties such as ordering, groupings, subexpression
sharing (forDAGs) and ranking are examples of others. Keeping plans that allowmore sharing
even though they are more expensive, is key to đnding plans that are globally optimal.

When taking this into consideration, there is seldom such a thing as a “best” plan. Oneplan
may be more expensive than another one, but may offer a more useful ordering. ăerefore, the
plan generator oĕen needs to retain multiple plans satisfying the same properties. Although
orderings, groupings and the like can be expressed as bit properties, it makes sense to not do
it, since we need more reasoning capabilities for it and can represent it more compactly in a
specialized form. ăe most common factor is useful orderings, as introduced by Selinger et al
in [SAC+79]. We continue by introducing orderings.

Orderings

ăere is more to orderings than one might think. A tuple stream has a single physical ordering,
which is the actual order of the tuples. It can however have multiple logical orderings. For
example, if a stream has the logical ordering (a, b, c), it also has (a, b) and (a). If the đlter
a = c is applied to the tuple stream, this introduces the orderings (c, b, a), (c, b), (c, a), (c)
and so on. If the đlter d = 4 is introduced, we get the orderings (a, b, c, d), (d, a, b, c) and so
on.

So far, we have not had the time to implement functionality to make the plan generator
consider useful orderings and groupings. As such, the data structures and rules presented does
not include this functionality, but we have put “todos” where it will be inserted. Most promi-
nent is the Order property in the Plan class. ăis property contains an object describing the
orders the plan produces. Rules/operators affecting the order (like the example above) will
update this property to reĔect it, while rules/operators requiring some order can consult it to
đnd out if it is satisđed. If not, they can explicitly insert a sort operator.

ăeOrder property will contain an order state object for the plan. Additionally, the order
component shown inFigure 5.1 is needed tobe able to reason about the orderings. [Neu05] im-
plements this as ađnite statemachine. It supports the twooperationsContainsOrder(logicalOrder)
and Infer(...). ăe đrst one enables rules to query the order property, while the latter enables
them to update the order state with whatever they do to the tuple stream. ăis way of doing it
integrates nicely with the plan generator [Neu05], and we therefore plan to base our work on
this model.

ăe state machine model mentioned above also has the ability to reason about available
groupings. For example, an ordering on (a, b) is automatically a grouping on (a, b) as well,

5.5. Plan Generation 43

since it can be easily aggregated — but not vice versa. ăis is useful when optimizing queries
with group by-s or projections.

Other Properties

Another interesting property is sharing — how much of the plan that is shared (for DAGs),
as this alters how the optimizer prunes plans and how the cost calculations are done. First, a
plan only dominates another if it is cheaper and offers at least as many sharing opportunities.
Second, the cost model needs to know how much of a plan is shared to correctly estimate the
cost of it, as n reads of a plan do not imply n times the cost. Also, if a plan that can be shared n
times cost more than n times another optimal plan, it can be pruned away. ăis topic quickly
becomes very complicated, so we leave it here for now.

When dealing with ranked queries, ranking properties may also be interesting to track, but
we have not studied this in depth.

5.5.3 Data Structures

Memoization Table

To avoid solving the same subproblemmore than once, the plan generatormemorizes solutions
to problems solved using a hash table. A set of properties uniquely identiđes a problem, so
BitSet is used as key in the table. Since multiple plans can satisfy the same properties (they can
have different orderings or not dominate each other in other ways), each table entry stores a
PlanSet, not aPlan. ăis table is the primarymemory user in the optimizer, but our testing has
discovered that it is in the area of up to 50 MB for moderately sized queries (7-8 relations).

ăe memoization table is declared in C# as a Dictionary<BitSet, PlanSet>.
1 private Dictionary <BitSet , PlanSet> plansCache ;

PlanSet

Multiple plans satisfying the same properties are organized in one PlanSet, which contains data
common to the plans. As such, a PlanSet can be viewed as a container for the solutions to a
subgraph of the entire solution operator graph (the equivalent for trees would be a branch).
For example, a PlanSet containing plans (or actually the single plan in this case) that have only
applied the selection in the example query earlier in this section would have the properties
{b1,b2,σ}.

PlanSet contains functionality to prune dominated plans as new plans are added to the
PlanSet using the AddPlan method. ăereby, the set will never contain any plan dominated
by any other plan (e.g. in terms of cost and ordering), and hence the optimizer will never store
such plans.

Listing 5.5: PlanSet class (simpliđed)
1 public class PlanSet : IEnumerable<Plan> {
2 private List <Plan> plans = new List <Plan>() ;
3 public BitSet Properties { get ; set ; }
4 public IPlanSetState State { get ; set ; }
5
6 public void AddPlan(Plan planToAdd) {
7 // Simpliđed : Add plan to PlanSet if cheaper than
8 // existing plans in the set , removing more expensive plans .
9 }

10 internal Plan GetCheapest() { // Simpliđed : Return cheapest plan . }
11 }

44 Chapter 5. Design and Implementation

ăe list plans contains all the plans currently stored. Properties stores the set of properties
satisđed by all the plans in the set. State stores the logical state common to the plans, as deđned
by the cost model (e.g. cardinality and tuple size). Finally, the GetCheapest method is used
by the optimizer to get the cheapest plan in the set when constructing the đnal plan in the
reconstruction phase.

Plan

ăe Plan class represents a concrete plan that satisđes the properties of the PlanSet contain-
ing it. Concrete in the sense that it has physical operators, an actual order of the operators
and thereby an estimated cost. It actually represents the topmost node in the plan, contain-
ing references to its subplans. It is as compact as possible, as potentially many millions will be
created.

Listing 5.6: Plan class (simpliđed, interface only)
1 public class Plan {
2 public PlanSet PlanSet { get ; set ; }
3 public IRule Rule { get ; set ; }
4 public ICost Costs { get ; set ; }
5 // Todo: Ordering , Shared bit sets .
6 public List <Plan> Children { get ; set ; }
7 public CostRelation Compare(Plan other) ;
8 public CostRelation CompareTotal(Plan other) ;
9 }

ăe PlanSet property contains a reference to the enclosing PlanSet, while Rule contains
the rule that constructed this plan. Costs stores this plan’s costs. ăe list Children contains
all subplans of this plan, listed from leĕ to right. For example, for a two-way join, this list
contains the leĕ and right input to the join. ăe Compare and CompareTotal methods enable
the optimizer to compare plans based on cost and (in the future) ordering.

As the “todo” in the code snippet suggests, we have not made the optimizer aware of or-
derings and extended DAG sharing yet. ăis is planned for the upcoming semester.

PlanSetState

To be able to calculate costs, the cost model needs some state information common to all plans
satisfying a set of properties. ăerefore the PlanSet stores an instance of IPlanSetState. It is up
to the cost model to deđne what it wants to store, so the deđnition of IPlanSetState is empty.
ăe optimizer core does not care about it contents.

Listing 5.7: BasicPlanSetState class (simpliđed)
1 public interface IPlanSetState { }
2 public class BasicPlanSetState : IPlanSetState {
3 public double Cardinality { get ; set ; }
4 public double TupleSize { get ; set ; }
5 }

For our simple costmodel, wemodel the plan set statewith theBasicPlanSetState class. For
each set of plans satisfying the same set of properties, we keep track of the expected cardinality
and tuple size. It is logical that all plans producing the same result will have the same cardinality
and tuple size; otherwise the techniques used for estimating these sizes would be broken. ăe
cardinalites in edge labels on đgures in Section 7.3 are actually taken from PlanSetStates for
the nodes below them.

5.5. Plan Generation 45

Costs

Each plan has an associated cost, stored in the Plan class as an instance of ICost. ăe deđnition
and explanation of ICost can be found in 3.4.1. In short, all the optimizer core cares about is
the Compare and CompareTotal methods.

Listing 5.8: BasicCost class (simpliđed, interface only)
1 public class BasicCost : ICost {
2 public double Cost { get ; set ; }
3 public static BasicCost operator +(BasicCost a , BasicCost b) ;
4 public CostRelation Compare(ICost other) ;
5 public CostRelation CompareTotal(ICost other) ;
6 }

For our simple cost model, we have implemented the plan cost as a single double Ĕoating
point number where lower is better. In the future, we plan to improve this to take random and
sequential disk reads, CPU and memory usage into consideration. ăe model is implemented
in the class BasicCost, containing a property Cost - the cost. ăe + operator is overloaded for
convenience while Compare/CompareTotal implements ICost. ăe costs in edge labels on đg-
ures in Section 7.3 are actually taken from BasicCosts for the nodes below them.

5.5.4 Preparation

ăe preparation phase has several responsibilities:

Instantiate applicable constructive rules. ăe input query operator graph is analyzed, and
any rules found to be relevantwill be instantiated. Only relevant rules will be considered
to keep the size of the search space down. For example, a JoinRule is instantiated for each
join operator found.

Conđgure rules. ăe rules instantiated in the previous step are conđgured. ăeProduced and
Required properties are set, and any other properties speciđc to the rule are set. For
example, the selectivities of joins and selection predicates are looked up and set using
statistics. For the example query introduced in Figure 5.2, Table 5.1 shows the instanti-
ated rules and their Produced and Required properties.

Minimize bit properties. As described in Section 5.5.1, bit properties are minimized during
this phase.

Initialize memoization table. ăememoization table is initializedwith an estimated number
of entries.

Look up access paths. ăe possibly useful access paths for the query is looked up using the
system catalog. For example, if a query is found to access relation A, table- and index
scans rules are added for A and their expected tuple sizes and counts are looked up. If the
query includes a selection, it can also choose to combine an index scan and the selection
in one rule.

Add base plans. Base plans are plans producedby IBaseRule rules as described inSection6.3.1.
Base rules are rules representing table and index scans. ăey produce properties, but
have no requirements. As such, base plans are usually the leaves of the operator graph.
ăey are computed and entered into the memoization table before the search phase be-
gins, as they do not provide search facilities, they only serve as a foundation to the plans
generated.

46 Chapter 5. Design and Implementation

Determine goals. For each query (the query can be a multi-query), the logical operators in
the query are examined to determine the logical goal of the query. ăis is what our con-
struction based optimizer uses as its starting point.

5.5.5 Search

Introduction

ăe search phase of plan generation is the heart of the optimizer, and is where the actual cost-
based planning is performed. A top-down, recursive strategy is used where the input to each
recursive call is a property set to be satisđed, the local goal. ăe signature of the main method
of the search phase, GeneratePlans, is shown below.

1 public PlanSet GeneratePlans (BitSet goal , ICost limit) ;

When called, it will generate all plans that satisđes the BitSet speciđed for goal, the local
goal. More than one plan can be returned (e.g. due to different orders). limit is used for cost-
based pruning, aborting the search as soon as the cost reaches limit. It returns a PlanSet with
the best plans found for the given goal and cost limit. Any dominated plans have been pruned
before the call returns.

Initially, the search is started with a call to GeneratePlans with the query goal, as deter-
mined during the preparation phase, supplied as the local goal. InĖnity is supplied for limit, as
we have no limit yet. ăis would be improved with heuristics — a better initial limit.

ăe optimizer does not call itself recursively, but leaves this to the search rules. Gener-

atePlans determines which rules are applicable and tries to use each of them to produce the
requested goal. ăe rules themselves controls the direction of search and call back to the op-
timizer, requesting solutions to subproblems (subset of properties) as their input. Basically,
GeneratePlans invokes the search rules, which again calls GeneratePlans. A very simpliđed
version of our simplest search rule, the rule for creating selections, is shown below (the imple-
mentation is actually in UnaryRule, which SelectionRule inherits from).

Listing 5.9: SelectionRule.Search(), very simpliđed (actually UnaryRule.Search())
1 public override void Search (PlanSet plans , ICost limit) {
2 foreach (Plan inputPlan in qo. GeneratePlans (plans . Properties − Produced, limit)) {
3 Plan selectionPlan = new Plan(inputPlan) { Rule = this };
4 plans .AddPlan(selectionPlan) ;
5 }
6 }

If GeneratePlans đnds that the SelectionRule may be used to produce a requested goal,
it will call the Search method, asking the rule to produce plans with this goal, as set in the
properties of plans, passed to the rule. ăe selection rule solves this by again requesting Gen-

eratePlans to produce plans with the requested properties minus what the selection itself
produces. ăen it iterates over the received plans, adding itself as the top node of each of them.
All of these plans are added to the supplied PlanSet, thereby returning them to the caller of Se-
lectionRule.Search(). Note that any dominated plans are automatically pruned inside the Ad-
dPlanmethod, so no plan found to be dominated in terms of cost and ordering will be stored
and used later in the search, effectively decreasing the size of the search space.

ăis effectively tries to add the selection to the top of any produced plan where it can be
(itsRequired propertiesmust be fulđlled). For example, a selection can not be put in a location
where its đlter attributes are not available. ăis is handled by GeneratePlans—a rule will not
be invoked if it cannot be used.

To speed up the search, the optimizermemorizes solutions to subproblems (actually partial
query plans) with the property set produced by the plan as the memoization key. ăus, if the

5.5. Plan Generation 47

same subproblem (the same property set) is requested from GeneratePlans twice, it will only
be computed once. ăis reduces the complexity from approximately factorial (n!) to exponen-
tial (an). ăis also implicitly gives limited support for DAGs (but more work is required to
fully support it), since solutions to subproblems are reused.

Implementation

Listing 5.10 shows the implementation ofGeneratePlans. First, on lines 4-5, the memoization
table is consulted. If an entry is found for the speciđed goal, it means we solved this problem
before, and we just return the PlanSet stored in the entry. Next, a sanity-check is performed
on lines 8-10 to determine if we can actually reach the requested goal with the rules available
for use. ăis is explained below. If we cannot reach the goal, we store this in the memoization
table as null and return null, as no plans can be generated. Memorizing this result is one of our
proposed improvements to the implementation in [Neu05].

If we have reached this far, we know that we can construct plans, sowe create a newPlanSet
with properties set to the current goal on line 14. ăen, in the loop on lines 15-22, we try to
apply all search rules, but only if it is relevant to the goal (have its requirements satisđed). We
call ISearchRule.Search, then we get the cheapest plan that was just generated and use it to
lower the cost bound used for cost-based pruning. Finally, we store the generated plans in the
memoization table and return them.

Listing 5.10: QueryOptimizer.GeneratePlans(), simpliđed
1 public PlanSet GeneratePlans (BitSet goal , ICost limit) {
2 PlanSet plans ;
3 // If we already have a plan that satisđes the goal , return it .
4 if (plansCache . TryGetValue(goal , out plans))
5 return plans ;
6
7 // Check if we can reach this goal with the current rule set .
8 if (GoalIsUnreachable (goal)) {
9 plansCache [goal] = null ;

10 return null ;
11 }
12
13 // Construct a new PlanSet and apply all applicable rules .
14 plans = new PlanSet () { Properties = goal };
15 foreach (ISearchRule searchRule in searchRules)
16 if (searchRule . IsRelevantTo (goal)) {
17 searchRule . Search (plans , limit) ;
18 // Try to lower the limit for cost−based pruning
19 Plan cheapest = plans .GetCheapest() ;
20 if (cheapest != null && cheapest . Costs .Compare(limit) == CostRelation . Better)
21 limit = cheapest . Costs ;
22 }
23
24 plansCache [goal] = plans ;
25 return plans ;
26 }

Rule Filters

ARule Ėlter is a relevancy check to verify if a rule is relevant to the goal being constructed. Each
IProducerRule offers a property Filter that is usually the union of its Produced and Required
properties. ăe Ėlter must be a subset of the goal being constructed to be relevant. ăis is why: If

48 Chapter 5. Design and Implementation

its Produced property set is not a subset, the rule is useless. If itsRequired property sets are not
subsets, the rule does not apply (requirements are not satisđed).

ăerefore, before we start constructing a plan, we check if any combination of rules can
construct the goal properties. If we did not do these checks, the time complexity of the search
phasewould bemuch greater, sincewewould be doing lots of unnecessarywork. ăe algorithm
can be seen below.

Listing 5.11: GoalIsUnreachable()
1 private bool GoalIsUnreachable (BitSet goal) {
2 BitSet mask = BitSetManager .Empty;
3 foreach (IProducerRule producerRule in rules)
4 if (producerRule . Filter <= goal)
5 mask |= producerRule . Filter ;
6 return mask != goal ;
7 }

Sample Search

ăe top two rules in Table 5.1 are the instantiated base rules for our sample query, while the
bottom two are the instantiated search rules. Given that the selection rule is applied đrst, the
plans shown in Figure 5.3 are generated during the plan generation phase.

ăePlan properties column lists the properties produced by the plan, while theEnterOrder
and Exit Order shows the order in which the plan generator starts constructing the plan and
when it đnishes. Plans within other plans in the Plan column means that they are subplans.

ăe two top plans are base plans initialized during the preparation phase. First the plan
generator uses the selection rule to produce the goal, {a1,a2,b1,b2,σ,◃▹} by creating plan 4.
ăis again triggers the creation of plan 3 by using the join rule. ăen it tries to create the goal
by using the join rule, creating plan 6, which triggers the creation of plan 5. Both plans 4 and 6
are complete plans, but in this case, plan 6 is chosen because of lower cost (not shown). Note
that the selection put itself on top of two plans — the base plan and the join plan, effectively
producing all possible plans.

To see the actual result of this query optimized, see Section 7.3.1.

Binary Rules

To give a short taste of how a binary operator might be implemented, we have included a very
simpliđed version of our join rule in Listing 5.12. ăe full implementation can be found in
Section 6.3.6. ăe rule works by determining all the properties that either of its children
must satisfy. ăis is wantedProperties = Requested properties - (Produced | RequiredLeě | Re-
quiredRight). ăen these properties are distributed between the leĕ and right subplan in all
possible ways, plans requested from the plan generator and added to the plan set.

Listing 5.12: JoinRule.Search(), very simpliđed
1 public override void Search (PlanSet plans , ICost limit) {
2 BitSet wantedProperties = plans . Properties − (Produced | RequiredLeĕ | RequredRight) ;
3
4 foreach (BitSet leĕ in wantedProperties .Walk()) {
5 BitSet right = wantedProperties − leĕ ;
6 foreach (Plan leĕPlan in qo. GeneratePlans (RequiredLeĕ | leĕ , limit)
7 foreach (Plan rightPlan in qo. GeneratePlans (RequredRight | right , limit)
8 plans .Add(new Plan(leĕPlan , rightPlan)) ;
9 }

10 }

5.5. Plan Generation 49

Selection
A.a2 = 8

Join
A.a1 = B.b1

FileReaderScan
A

FileReaderScan
B

Selection
A.a2 = 8

FileReaderScan
A

Join
A.a1 = B.b1

FileReaderScan
A

FileReaderScan
B

Join
A.a1 = B.b1

FileReaderScan
B

Selection
A.a2 = 8

FileReaderScan
A

FileReaderScan
A

FileReaderScan
B

Plan Properties Plan Enter Order Exit Order

0 0

0 0

2 1

1 2

3 3

2 4

a1,a2

b1,b2

a1,a1,b1,
b2,⋈

a1,a2,b1,
b2,σ,⋈

a1,a2,σ

a1,a2,b1,
b2,σ,⋈

Figure 5.3: Plans generated for the query in Figure 5.2. ăe đnal plan is highlighted.

50 Chapter 5. Design and Implementation

5.5.6 Reconstruction

Aĕer the search phase completes, we are leĕwith a hierarchy of plans in thememoization table
that represents the optimal plan. ăe root plan (satisfying the query goal) will reference one or
more subplans, which again may reference more subplans. ăe reconstruction phase rebuilds
the operator graph from this plan hierarchy.

ăe plan generator itself is not involved in this step — it is leĕ up to the rules to enable
them to dowhatever they want during this phase. ăis promotes extensibility. IRule, which all
constructive rules implement, offers the BuildAlgebramethod, which is responsible for build-
ing the operator node for itself. Each plan in the plan hierarchy was also tagged with the rule
that produced it during the search phase. ăe plan generator starts the reconstruction phase
by calling BuildAlgebra on the rule that produced the root plan, passing the plan to it. ăis
rule is again responsible for calling BuildAlgebra on the rules producing its input plans. Since
the plan hierarchy may form a DAG, each rule may be asked to construct the same operator
node twice. ăerefore, during reconstruction, a Reconstruction table is used to just return the
previously constructed operator node. Finally, the completed operator node graph is returned
as the optimized query.

Listing 5.13 shows the BuildAlgebramethod for SelectionRule.

Listing 5.13: SelectionRule.BuildAlgebra(), simpliđed
1 public override Node BuildAlgebra (Plan plan) {
2 Node newNode;
3 // Check if we have already constructed this plan
4 if (queryOptimizer . ReconstructionTable . TryGetValue(plan , out newNode))
5 return newNode;
6
7 // Call recursively
8 Node input = plan . Children [0]. Rule . BuildAlgebra (plan . Children [0]) ;
9

10 // Create node
11 newNode = newNode() { OperatorType = Node.OperatorType };
12 newNode.Children.Add(input) ;
13
14 // Store in reconstruction table
15 queryOptimizer . ReconstructionTable [plan] = newNode;
16 return newNode;
17 }

5.6 Graph Pattern Matching

Graph patternmatching is the procedure of đnding a subgraph in a graph that matches a given
pattern. In our context, it is đnding a matching pattern in the query operator DAG. We use
this to declare patterns for transformation rules that transform the operator graph, usually by
modifying the subgraph that matched the pattern (for example, merging two consecutive pro-
jections). We also use it in rule binders for constructive rules, which usually look for single op-
erator nodes to instantiate rules for. Rule binders are used for constructive rule initialization
during the preparation phase of plan generation, and is dealt with in Section 6.3.1. Patterns
make it easy for implementers of rules to express what they are looking for, instead of having
to look for it themselves using code.

Patterns are expressed declaratively by constructing a graph consisting of AbstractNode-
Matchers. AbstractNodeMatcher is an abstract base class for different node matchers, each
used to match a node of some kind. It deđnes two lists, Children and Parents, which make it

5.6. Graph Pattern Matching 51

possible to connect matchers together in a graph, effectively constructing a graph pattern.

Listing 5.14: AbstractNodeMatcher, simpliđed
1 public abstract class AbstractNodeMatcher {
2 public List <AbstractNodeMatcher> Children { get ; set ; }
3 public List <AbstractNodeMatcher> Parents { get ; set ; }
4 }

We now list the different node matchers prototyped so far:

NodeTypeMatcher matches an operator node of a given type, for example Selection or Fil-
eReaderScan.

NodeBehaviorMatcher matches an operator node satisfying a speciđed behavior. ăedeđned
behaviors are:

SetPreserving Preserves the set of tuples, i.e. the operator is not allowed to remove or
add tuples to the set.

DataPreserving Preserves the data in the tuples, i.e. the operator is not allowed to alter
the tuple data.

OrderPreserving Preserves the tuple order, i.e. the operator is not allowed to alter the
order of the tuples.

It allows for arbitrary expressions, for example SetPreserving && !OrderPreserving.

ExpressionMatcher allows for specifying an arbitrary expression (Node→boolean) formatch-
ing a node. LINQ (Language Integrated Query) compiled expressions are used for per-
formance.

DontcareMatcher matches any node.

ZeroOrMore matches zero ormore nodesmatching a speciđedAbstractNodeMatcher (prop-
erty on the ZeroOrMore class).

For example, the pattern

NodeTypeMatcher(”Projection”) →
ZeroOrMore(NodeBehaviorMatcher(OrderPreserving)) →

NodeTypeMatcher(”Selection”)

matches any occurrence of a projection operator followed by zero or more order preserving
operators, followed by a selection operator. Tomake this easy to express in code, we have added
some syntactic sugar to the AbstractNodeMatcher class. ăe pattern above can be expressed in
code as:

new NodeTypeMatcher(”Projection”).WithChildren(new ZeroOrMode(new

NodeBehaviorMatcher(OperatorBehavior.OrderPreserving)).WithChildren(new

NodeTypeMatcher(”Selection)))

Much like regular expressions, nodes can be grouped (“tagged”) for easier retrieval when a
match is found. For example, new NodeTypeMatcher(”Projection”).GroupAs(”Bing”) will
make it possible to get the part of the graph that matched the projection part of the pattern by
the name “Bing”.

52 Chapter 5. Design and Implementation

ăeresult of amatch is a PatternMatch as shownbelow. Sources is a list of the nodesmatch-
ing the input leaves of the pattern (bottom-most nodes with the root at the top), while Sinks
is a list of the output leaves (it is a list since we can have DAGs matching the pattern). Groups
is a dictionary that map group names to nodes matching a declared group.

ăe nodes referenced by the PatternMatch can be directly modiđed by the rule declaring
the pattern. For instance Match.Groups[”Bing”] = nullwill make the patternmatcher delete
the node, updating parent/child pointers.

Listing 5.15: PatternMatch
1 public class PatternMatch {
2 public List <Node> Sources { get ; set ; }
3 public List <Node> Sinks { get ; set ; }
4 public Dictionary < string , PatternGroup> Groups { get ; set ; }
5 }

ăeidea behind expressing the patterns declaratively is that it is up to the optimizerwhat al-
gorithm touse for đndingmatches. For example, wewill probably only implement a naive algo-
rithm, but it might be of interest to implement something better later. For example, [CGK05]
describes an algorithm that runs in polynomial time in directed acyclic graphs, while [Gei08]
is a full solution for graph rewriting.

Currently, we have only implemented the NodeTypeMatcher, which is being used by the
rule binders.

6
Rules: Search Space and Pre-/Post Processing

“Any problem in computer science can be solved with another level of indirec-
tion.”

– David Wheeler

6.1 Introduction

As introduced in Section 2.4, rule-based optimization is much more extensible, which is why
we chose it for our optimizer. ăis chapter introduces the rules used in our optimizer and
equally important: how they are integrated with the optimizer.

Rules provide extensibility andmodiđability in the sense that the optimizer does not know
the individual rules speciđcally. It only knows the rule population and applies the rules appli-
cable at any given moment. To be able to do this, the optimizer must have a common interface
to all rules. ăis is achieved using interfaces in C#. For example, all transformation rules im-
plement ITransformationRule.

Another important matter is how the optimizer is made aware of the rules. It clearly can-
not be hard-coded in the optimizer itself, since this would ruin extensibility. ăis means that
the optimizer cannot know the rules at compile time. Instead, the optimizer uses reęection,
which is a feature in .NET for reasoning about program metadata. At optimizer startup, us-
ing reĔection, all types (classes) in all known assemblies (dll, .NET equivalent of Java JARs) are
enumerated. ăose identiđed as rules are loaded into the optimizer and prepared for optimizer
use.

To be taken into consideration for optimizing, all the rules have to do is to declare them-
selves as rules. To do this, we use custom .NET attributes, which is a way to annotate classes
(and any other programming construct) with metadata. For transformation rules, this hap-
pens by appending [TransformationRule] before the class declaration. Constructive rules
use a rule binder concept as explained in Section 6.3.1. ăereby, the optimizer does not have
dependencies on the rules and minimal effort is needed to add new rules — it just needs to be
tagged, compiled and made available to the optimizer.

We đrst present the transformation rules used during pre- and post-processing, then the
constructive rules used during plan generation. Whereas transformation rules transform a
complete operator graph from one valid state to another, constructive rules build the graph
from scratch.

54 Chapter 6. Rules: Search Space and Pre-/Post Processing

6.2 Transformation Rules

6.2.1 Rule Interface

All transformative rules, both pre- and post-processor rules, implement ITransformationRule,
as shown in Listing 6.1. ăe Pattern property enables the rule to declare the graph pattern that
shouldmatch a sub graph of the operator graph for this rule to đre. DependsOn lists the names
of all transformative rules that should be invoked before this one, if more rules are applicable.
Fire is called with the matching pattern when the rule is invoked. Finally, if this rule should
be applied iteratively, that is, applied multiple times until the result stabilizes, it should return
true for Iterative.

Listing 6.1: ITransformationRule interface
1 interface ITransformationRule {
2 AbstractNodeMatcher Pattern { get ; }
3 List < string> DependsOn { get ; }
4 void Fire (PatternMatch match) ;
5 bool Iterative { get ; }
6 }

Additionally, each transformation rule needs to be tagged with the TransformationRule
attribute to announce its existence to the optimizer. When detecting this attribute, the opti-
mizer will load the rule and invoke it when its pattern matches. ăis attribute also decides if
the rule is a pre- or post-processor (or both) by taking the type as an argument. To tag a rule as
a pre-processor, one would insert this line just before the class declaration: [Transformation-
Rule(TransformationType.Pre)].

6.2.2 Merge Trim and Sort

So far, we have implemented one transformation rule, namely the MergeTrimSort rule. ăis
rule comes from the observation thatMARS’ Sort operator includes aTrim sort option, optimiz-
ing the internal search algorithm to only output a window of n tuples, with an offset o from
the top. ăe alternative is to have a regular sort operator with a Trim operator just above it,
however, this would not allow the sort algorithm to be optimized for the trim operation.

Observing that a sort operator with a trim just above it is semantically equivalent to setting
the trim options on the sort operator and removing the trim operator, we have developed a rule
to rewrite this particular situation in the operator graph. Actually, the trim operator does not
even have to be just above the sort operator. It is semantically correct to merge them as long as
none of the following types of operators are between them:

Operators altering the tuple set. Operators altering the tuple set by removing or adding tu-
ples will change the tuples produced by the trim operator, causing behavior that cannot
be predicted.

Operators altering the tuple order. Obviously, altering the order of the tuples will alter the
output of the trim operator as well.

Double output operators. If the output from the sort operator is used by other branches in
the graph, it cannot be modiđed.

ăe implementation of the MergeTrimSort rule is given in Listing 6.2. Most protrusive is
the pattern declaration, deđning the pattern we are looking for in the operator graph. It uses
our declarative pattern language to express what we just explained above. First, it looks for a

6.2. Transformation Rules 55

nodewith type “TrimOperator”. It is grouped as “trim” (just as in regular expressions) tobe easy
to get back to later. ăen, it declares that it should have a single child (theWithChildren takes
a list of children). ăis child should be zero ormore nodes (below each other) which should be
both SetPreserving and OrderPreserving as discussed above. Further, all of them should only
have one parent, satisfying the third condition above. Finally, the last of these zero or more
nodes should be a sort operator, grouped as “sort”.

Listing 6.2: MergeTrimSort rule (simpliđed)
1 [TransformationRule (TransformationType . Pre | TransformationType . Post)]
2 public class MergeTrimSort : ITransformativeRule {
3 public override AbstractNodeMatcher Pattern {
4 get {
5 return (newNodeTypeMatcher(”TrimOperator”))
6 .GroupAs(”trim”)
7 .WithChildren(
8 new ZeroOrMore(
9 NodeBehaviourMatcher. All (OperatorBehaviour . SetPreserving

10 | OperatorBehaviour . OrderPreserving)
11 .WithAnyOneParent() // Do not match a branching node.
12)
13 .WithChildren(
14 (newNodeTypeMatcher(”SortOperator”)) .GroupAs(”sort ”)
15)
16) ;
17 }
18 }
19 public override void Fire (PatternMatch match) {
20 Node sortOperator = match.Groups[” sort ”]. OnlyMatch;
21 match.Groups[”trim”]. OnlyMatch = null ;
22 sortOperator [” offset ”] = ...;
23 sortOperator [” hitcount ”] = ...;
24 }
25
26 public override bool Iterative { get { return true ; } }
27 }

ăe Fire method is called by the optimizer when a match is found, with the matched ex-
pression as argument. It sets the trim operator to null, indicating that it should be removed,
and also sets the properties on the sort operator. true is returned for Iterative since there could
be more than one trim to be merged into the sort. Each rule appliance would merge one oc-
currence.

A special case arises when the trim properties are already set on the sort operator. ăey
need to be combined with the properties on the trim operator. We have omitted it here for
brevity, but the full code can be found in Appendix A.4.

In the future we plan to implement another rule that detects trim or sort operators with a
trim window size set to 0. Such an operator could be replace with a no-op operator producing
no tuples.

6.2.3 More Transformations

During our research, we have identiđed various transformations usually done by query opti-
mizers like [Pos08b]. In the following, we describe some of them. Although we have not im-
plemented them, we include them as inspiration for future work.

Replace plans that produce no output with a no-op. If a plan is guaranteed to produce no

56 Chapter 6. Rules: Search Space and Pre-/Post Processing

output (like a SELECT TOP 0), it can be replaced with a dummy operator that produces
no output.

Evaluate constant expressions. ăis step involves evaluating any expressions that turns out to
be constant — i.e. expressions that are only built up from constant sub expressions.

Transform ANY and EXISTS in WHERE and JOIN/ON clauses to joins, if possible.

Reducing outer and semi join to inner joins can be beneđcial where possible. See [HR] for
an example.

Constraint exclusion enables the optimizer to use constraints to optimize the query. For in-
stance, there is no point in searching for events that happened in 2008 in a partition
containing only events for 2007.

Except Conditions. Push conditions from the đrst operand of EXCEPT into the second
operand as well (we will not need the extra results anyway). ăe same goes for INTER-
SECT.

TransformMIN/MAX aggregate functions. Sometimes it is beneđcial to replaceMIN/MAX
aggregate functions by subqueries of the form SELECT col FROM tab WHERE ... ORDER

BY col ASC/DESC LIMIT 1.

Split selection predicates. Selection predicates in conjunctive normal form can be split to be
able to move them separately around the operator graph. If not in CNF, they can pos-
sibly be transformed.

Push NOTs down as far as possible. Apply DeMorgan’s laws if applicable.

Distinct pushdown vs. pull up vs. elimination. Pushdown: Allow early elimination of du-
plicates. Pull up/elimination: Due to implicit distinctiveness from joins, etc.

Transitive closure of predicates. For instance, given that we have T1.C1 = T2.C2, T2.C2 =

T3.C3, T1.C1 > 5, we can also add T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5 to
increase selectivity.

Merging subqueries. In some cases, multiple subqueries can be merged to a single subquery.
For example, if multiple subqueries fetch data from the same table, a merge may be pos-
sible.

Inline functions. It may be beneđcial to inline functions, i.e. make subqueries of them.

For more transformations and rewrite rules and techniques, see [Moe06], part III.

6.3 Constructive Rules

Constructive rules are used during the plan generation step, and are each responsible for con-
structing a part of the query graph. ăey declare what part of the query they can be responsible
for, enabling the plan generator to determine which rules to utilize. It is important to know
that addingmultiple alternative rules for the samequery partswill increase the size of the search
space accordingly. ăe rules decide themselves in which direction they want to take the plan
search and how they would like to build the query graph. ăey are not transformative, and are

6.3. Constructive Rules 57

Figure 6.1: Class diagram for the constructive rule interface hierarchy.

not used during pre/post-processing. ăe rules come in different types, depending on their
role in the plan generation.

We start out by formalizing the types of rules and their interface to the plan generator,
before we explain the different rules we have implemented. At this stage, we have implemented
rules for đle reader scans (analogous to table scans), selections and joins. ăis enables us to do
some selection predicate move-around and join ordering. ăis is demonstrated in Section 7.3.

6.3.1 Rule Interface

ăe borderline between the optimizer core and the different search rules includes multiple in-
terfaces in a hierarchy, as shown in Figure 6.1. A typical constructive rule will implement either
IHelperRule, IBaseRule or ISearchRule, depending on the type of rule. IRule is a base interface
for the rest, while IProducerRule is a base interface for all rules producing bit properties. Rule
binders are used to instantiate rules. Below follows a description of each interface.

IRule, shown in Listing 6.3 is the base interface for all constructive rules. ăeName prop-
erty returns the name of the rule for display- and debug purposes. ăeUpdatePlanmethod is
used during plan generation and updates a given plan’s cost and rule instance. Finally, theBuil-
dAlgebramethod is used during the reconstruction phasewhen each rule recursively constructs
the đnal operator graph.

Listing 6.3: IRule interface
1 public interface IRule {
2 string Name { get ; }
3 void UpdatePlan(Plan plan) ;
4 Node BuildAlgebra (Plan plan) ;
5 }

Helper rules, which implement IHelperRule, as shown in Listing 6.4 are rules that the
optimizer does not directly know or reason about. Helper rules are typically used by other
search rules. For instance, the Join rule uses the HybridHashJoinRule or (in the future) the
MergeJoinRule. Helper rules do not have any members in addition to IRule, so the interface
declaration is empty and is just used as a marker.

Listing 6.4: IHelperRule interface

58 Chapter 6. Rules: Search Space and Pre-/Post Processing

1 public interface IHelperRule : IRule { }

Producer rules are used actively by the query optimizer during the search phase of the plan
generation. As the name suggests, they produce bit properties, but do not necessarily require
any properties. IProducerRule, as shown in Listing 6.5 contains the following members. ăe
Produced property gives which properties this rule can be used to achieve. Filter is used by the
query optimizer to đlter out unapplicable rules and unreachable plans, as described in Section
5.5.5. Each search rule is given an Id to identify it to the optimizer, and the Node property
points to the original node in the input operator graph it was instantiated from.

Listing 6.5: IProducerRule interface
1 public interface IProducerRule : IRule {
2 BitSet Produced { get ; set ; }
3 BitSet Filter { get ; }
4 int Id { get ; }
5 Node Node { get ; set ; }
6 }

Base rules are rules producing, but not requiring bit properties. ăey are used tomodel the
leaves of the operator graph, typically table, index or đle scans. An example is the FileReader-
ScanRule. ăe Initializemethod, as shown in Listing 6.6, is called when the rule is initialized
during the preparation phase of plan generation.

Listing 6.6: IBaseRule interface
1 public interface IBaseRule : IProducerRule {
2 void Initialize (PlanSet plans) ;
3 }

Search rules are the most important rules. ăey both produce and require bit proper-
ties, and model the internal nodes in the operator graph. Examples include Selection and Join.
More important, they control the direction in which the optimizer searches for plans. ăe Is-
RelevantTo method determines if the rule instance is relevant to the goal speciđed, that is, if
the rule can be useful in this context. ăe Search method is the heart of search rules. When-
ever the optimizer đnds that the rule instance can be applicable in a certain context, it will call
Search with a PlanSet. ăe rule should answer by generating plans satisfying the properties of
the PlanSet (a BitSet). Normally, this will be done by applying some logic and calling back to
the optimizer. A cost limit is included, and the search should be aborted whenever this limit
is exceeded. Finally, the Required property returns a list of the required input properties for
each child, from leĕ to right.

Listing 6.7: ISearchRule interface
1 public interface ISearchRule : IProducerRule {
2 bool IsRelevantTo (BitSet goal) ;
3 void Search (PlanSet planSet , ICost limit) ;
4 IList <BitSet> Required { get ; }
5 }

Finally, rule binders provides the optimizer with a way to instantiate relevant rules for the
query to be optimized. ăe basic functionality of a rule binder is to declare a Pattern that
matches nodes in the input operator graph (for instance nodes of type SelectOperator) and
instantiate and return rules with properties set. For instance, the SelectionOperatorBinder
sets the selectivity of the selection.

Classes that implement IRuleBinder, and are tagged with the [RuleBinder] attribute will
be loaded by the optimizer upon startup. For each query to be optimized, all binders hav-
ing matching patterns will be invoked. Aĕer assigning itself to the QueryOptimizer property,

6.3. Constructive Rules 59

Figure 6.2: Class diagram for the implemented search rules.

the query optimizer will invoke InitializeBitSets with the matches in the operator graph. ăis
method is supposed to add the names of the required and produced bit properties to the Bit-
SetManager. ăen InitializeRules is called. It should instantiate rules and set properties on
them, like the Produced and Required properties. Finally, the optimizer callsGetRules to fetch
the instantiated rules.

Listing 6.8: IRuleBinder interface
1 public interface IRuleBinder {
2 AbstractNodeMatcher Pattern { get ; }
3 void InitializeBitSets (IEnumerable<PatternMatch> matches) ;
4 void InitializeRules () ;
5 IEnumerable<IProducerRule> GetRules () ;
6 QueryOptimizer QueryOptimizer { get ; set ; }
7 }

For a complete example of a rule binder, see Listing A.4 in Section A.3.

6.3.2 Scan Rules

We now continue by describing the three (or four, including helper rules) rules we have im-
plemented. ăeir relationship can be seen in Figure 6.2. AbstractSearchRule, UnaryRule and
BinaryRule are abstract rules implementing common functionality. First out are themost basic
rules, the general class of scan rules.

Scan rules model the different access paths the system supports, the most basic being table
scans, or in our case, đle reader scans since this is what is used in our copy of MARS. Index
scans and index lookups are also modeled as base rules, the primary difference being that they
produce ordered output. Index lookups also applies a selection predicate and are modeled as a
base rule that also produces the bit property “selection applied”.

ăe FileReaderScanRule is presented, somewhat simpliđed, in Listing 6.9. ăeNode prop-
erty points to the node the rule was instantiated from, whileCardinality is the estimated cardi-
nality for this scan (taken from statistics). For this rule,Filter is equal toProduced, and contains

60 Chapter 6. Rules: Search Space and Pre-/Post Processing

the attributes produced by this scan. Id is the unique id for this rule in this optimization and
Name is a user-friendly name.

ăe Initializemethod, is called when the rule is initialized during the preparation phase of
plan generation and sets some basic data read from system catalogs and statistics in the PlanSet-
State. UpdatePlanwill also be called during preparation and updates a given plan’s cost. Finally,
the BuildAlgebramethod is used during the reconstruction phase and creates a new node and
copies the properties from the original node in the input query. ăis will be ređned when it is
integrated closed with MARS.

Listing 6.9: FileReaderScanRule class (simpliđed)
1 public class FileReaderScanRule : IBaseRule {
2 public Node Node { get ; set ; }
3 public double Cardinality { get ; set ; }
4 public BitSet Filter { get ; set ; }
5 public BitSet Produced { get ; set ; }
6 public int Id { get ; private set ; }
7 public string Name { get { return ” FileReaderScan ” ; } }
8
9 public void Initialize (PlanSet plans) {

10 plans . State = new BasicPlanSetState () { Cardinality = ..., TupleSize = ... };
11 }
12
13 public void UpdatePlan(Plan plan) {
14 plan . Costs = new BasicCost (Cardinality * 0.001) ;
15 }
16
17 public Node BuildAlgebra (Plan plan) {
18 Node newNode;
19 if (queryOptimizer . ReconstructionTable . TryGetValue(plan , out newNode))
20 return newNode;
21
22 newNode = newNode() { OperatorType = Node.OperatorType };
23 newNode. Properties = Node. Properties ;
24
25 queryOptimizer . ReconstructionTable [plan] = newNode;
26 return newNode;
27 }
28 }

6.3.3 Unary Rule

Unary rules are rules with only one child, and most of them can be implemented quite easily
if one do not want to anything advanced. ăe UnaryRule provides this implementation. It
implements a basic search strategy of constructing all plans where the rule itself is the topmost
one, thereby producing plans with the rule in all possible locations. However, leaving the de-
fault implementation in place for all unary rulesmaymake the search space too big (it increases
exponentially with the number of rules), so care should be used.

Listing 6.10 shows the implementation of UnaryRule. ăe Search method basically asks
the plan generator to produce all plans with the requested propertiesminuswhat the rule itself
produces, effectively placing itself on the top. If no plans can be generated, nothing is done.
Else, if this is the đrst plan being produced for these properties, we set some PlanSetState. ăe
output cardinality is input cardinality times selectivity, while tuple size is the same. Finally, for
each input plan, a new output plan is created with the input plan as its only child, the plan is
updated (with costs etc.) and added to the output.

6.3. Constructive Rules 61

Listing 6.10: UnaryRule (simpliđed)
1 public abstract class UnaryRule : AbstractSearchRule {
2 public override void Search (PlanSet plans , ICost limit) {
3 PlanSet input = qo. GeneratePlans (plans . Properties − Produced, limit) ;
4 if (input == null)
5 return ;
6
7 if (plans .Count == 0) { // First run , so set some state .
8 plans . State = new BasicPlanSetState () {
9 Cardinality = input . State . Cardinality * Selectivity ,

10 TupleSize = input . State . TupleSize
11 };
12 }
13
14 foreach (Plan inputPlan in input) {
15 Plan newPlan = new Plan () ;
16 newPlan.Children = new List <Plan> { inputPlan };
17 UpdatePlan(newPlan) ;
18 plans .AddPlan(newPlan);
19 }
20 }
21 }

6.3.4 Selection Rule

SelectionRule constructs selections in the query. It is a unary rule and therefore inherits from
UnaryRule. At this stage, we have not optimized its implementation and just leĕ the standard
unary search method in place. In the future, we plan to make it smarter to decrease the size of
the search space. One way to do it would be to pre-compute its position using heuristics, using
operator dependencies in the bit properties to force it to stay in one location. Another way is
to a make it smarter than just putting itself everywhere.

SeeUnaryRule.Search inListing6.10 for theSearchmethodandListing5.13 inSection5.5.5
(Reconstruction Phase) for the BuildAlgebra method. Listing 6.11 shows the rest of the im-
plementation, the UpdatePlan method which mainly updates the plan costs. ăe plan cost is
the input cost plus the cost of evaluating the predicate for each tuple.

Listing 6.11: SelectionRule (simpliđed)
1 public class SelectionRule : UnaryRule {
2 public double PredicateCost { get ; set ; }
3 public override void UpdatePlan(Plan plan) {
4 plan .Rule = this ;
5 CalculateCosts (plan) ;
6 }
7 private void CalculateCosts (Plan plan) {
8 BasicCost childCost = plan . Children [0]. Costs ;
9 BasicPlanSetState childState = plan . Children [0]. PlanSet . State ;

10 plan . Costs = childCost + new BasicCost (childState . Cardinality * PredicateCost) ;
11 }
12 }

6.3.5 Binary Rule

As for unary rules, we also have an abstract base class for binary rules (rules with two children).
Currently, it only includes some convenience properties, butmay be extended withmore func-
tionality in the future.

62 Chapter 6. Rules: Search Space and Pre-/Post Processing

Listing 6.12: BinaryRule
1 public abstract class BinaryRule : AbstractSearchRule {
2 public BitSet RequiredLeĕ { get { return Required [0]; } }
3 public BitSet RequiredRight { get { return Required [1]; } }
4 }

6.3.6 Join Rule

ăe JoinRule constructs joins in the query graph and is thereby responsible for one of the core
problems of query optimization; join ordering. It is also the only binary rule we have imple-
mented. We gave a more simpliđed code sample in the end of Section 5.5.5; it might be wise
to start there if not already read.

[Neu05] gives the implementation for bushy join enumeration only, but we have imple-
mented leĕ-deep enumeration as well. Which to use is controlled by the JoinEnumeration
property on the join rule. Line 9 in Listing 6.13 checks which one is set. Let us consider bushy
join trees đrst, as this is the simplest case.

ăe basic idea is that the rule is requested to produce a set of properties. Some of them it
produces itself, and some must be requested from the input plans. ăe difference from unary
rules is that it can get them from either input plan. Its RequiredLeě/RequiredRight properties
must be requested from the leĕ or right one (for example, the attributes the join predicate refer-
ences), but the rest can be freely chosen. ăerefore, we determine all the properties that either
of its children must satisfy (the freely chosen). ăis is wantedProperties = Requested properties
- (Produced | RequiredLeě | RequiredRight) and happens on line 10. ăen InternalSearch is
called to produce plans.

For leĕ-deep enumeration, the difference is how the freely chosen properties are deter-
mined. When the join rules are initialized, a property OtherJoinRules is set, containing the
produced and required properties of all the other join rules. For leĕ-deep plans, the right in-
put should be a relation, so all other remaining joins should be in the leĕ input. ăerefore,
the freely chosen properties, wantedProperties = Requested properties - (Produced | OtherJoin-
Rules) on line 14. remaining Joins is computed as the joins remaining below this rule. ăe ones
performed above this one, closer to the root, are removed. All remaining joins are explicitly
forced to the leĕ input by specifyingRequiredLeě | remaining Joins as the leĕ parameter to In-
ternalSearch. InternalSearchneeds to be called a second timewithRequiredLeě/RequiredRight
swapped (butwith remaining Joins still on the leĕ side) to enable join ordering at all (otherwise
it would just force one possible order.

Listing 6.13: JoinRule, simpliđed
1 public class JoinRule : BinaryRule {
2 public HybridHashJoinRule HybridHash { get ; set ; }
3 public BitSet OtherJoinRules { get ; set ; }
4 public JoinEnumeration JoinEnumeration { get ; set ; }
5 public override string Name { get { return ” Join ” ; } }
6
7 public override void Search (PlanSet plans , ICost limit) {
8 BitSet wantedProperties , remaining Joins ;
9 if (JoinEnumeration == JoinEnumeration .Bushy) {

10 wantedProperties = plans . Properties − (Produced | RequiredLeĕ | RequiredRight) ;

11 InternalSearch (plans , limit , ref wantedProperties , RequiredLeĕ , RequiredRight) ;
12 }
13 else if (JoinEnumeration == JoinEnumeration . LeĕDeep) {
14 wantedProperties = plans . Properties − (Filter | OtherJoinRules) ;
15 remaining Joins = (OtherJoinRules & plans . Properties) − Filter ;

6.3. Constructive Rules 63

16 InternalSearch (plans , limit , wantedProperties , RequiredLeĕ | remaining Joins ,
RequiredRight) ;

17 InternalSearch (plans , limit , wantedProperties , RequiredRight | remaining Joins ,
RequiredLeĕ) ;

18 }
19 }

ăen the freely chosen properties are distributed between the leĕ and right subplan in
all possible ways, asking the plan generator to produce plans for each possible combination.
ăis is done using the BitSet.Walk method on line 21. First, the rule asks for the leĕ input
plans. If there are none, we continue to the next leĕ/right distribution. We then calculate the
rightProperties on line 26 and generate the right input plans. If the PlanSet is empty, we then
initialize its PlanSetState on line 31. Finally, we create new plans for each possible input plan
we found on lines 38-45.

ăe JoinRule itself only represents the logical join. ăe different physical join algorithms
are represented by helper rules. In the loops in lines 38-45, one plan is actually added for each
join algorithm (in the future). ăis is done by callingUpdatePlan on the corresponding helper
rule, giving it the newly created plan as parameter. Dominated plans are pruned automatically
by PlanSet.

Listing 6.14: JoinRule, simpliđed
20 private void InternalSearch (PlanSet planset , ICost limit , BitSet wantedProperties ,

BitSet leĕ , BitSet right) {
21 foreach (BitSet leĕProperties in wantedProperties .Walk()) {
22 PlanSet leĕPlans = queryOptimizer . GeneratePlans (leĕ | leĕProperties , limit) ;
23 if (leĕPlans == null || leĕPlans .GetCheapest() . Costs .Compare(limit) ==

CostRelation .Worse)
24 continue ;
25
26 BitSet rightProperties = wantedProperties − leĕProperties ;
27 PlanSet rightPlans = queryOptimizer . GeneratePlans (right | rightProperties , limit

) ;
28 if (rightPlans == null)
29 continue ;
30
31 if (plans .Count == 0) { // First plan , so set some state .
32 plans . State = new BasicPlanSetState () {
33 Cardinality = leĕPlans . State . Cardinality * rightPlans . State . Cardinality

* Selectivity ,
34 TupleSize = leĕPlans . State . TupleSize + rightPlans . State . TupleSize
35 };
36 }
37
38 foreach (Plan leĕPlan in leĕPlans) {
39 foreach (Plan rightPlan in rightPlans) {
40 Plan plan = new Plan(leĕPlan , rightPlan) ;
41 HybridHash.UpdatePlan(plan) ;
42 // Todo: Consider MergeJoin , NestedLoopsJoin .
43 plans .AddPlan(plan) ;
44 }
45 }
46 }
47 }

ăe logical join rule should never build any algebras (this is leĕ up to the helper rules), so
BuildAlgebra just throws an exception. UpdatePlan should never be called either, but if it is,
we just delegate it to the HybridHashJoin rule.

64 Chapter 6. Rules: Search Space and Pre-/Post Processing

Listing 6.15: JoinRule, simpliđed
48 public override void UpdatePlan(Plan plan) {
49 HybridHash.UpdatePlan(plan) ;
50 }
51 public override Node BuildAlgebra (Plan plan) {
52 throw newNotImplementedException() ;
53 }
54 }

HybridHashJoin Rule

ăe HybridHashJoinRule is a helper rule, and not directly used by the optimizer, but by the
JoinRule. ăerefore, it does not implement the Searchmethod, but onlyUpdatePlan andBuil-
dAlgebra. UpdatePlan updates the cost of the plan aĕer the formula C (A ◃▹ B) = C (A) +
C (B) + |A ◃▹ B|, that is, the sum of the children costs plus the cardinality of the join. BuildAl-
gebra constructs an operator nodewith the input plans as children. As of now, it just copies the
properties and node time from the input query, but this will be changed to actually instantiate
a join operator of the correct type when we integrate with MARS.

Listing 6.16: HybridHashJoinRule, simpliđed
1 public class HybridHashJoinRule : IHelperRule {
2 private JoinRule parent ;
3 public string Name { get { return ”HybridHashJoin” ; } }
4 public void UpdatePlan(Plan plan) {
5 plan .Rule = this ;
6 CalculateCosts (plan) ;
7 }
8 private void CalculateCosts (Plan plan) {
9 Plan leĕInput = plan . Children [0], rightInput = plan . Children [1];

10 plan . Costs = leĕInput . Costs + rightInput . Costs + new BasicCost ((leĕInput . State .
Cardinality *

11 rightInput . State . Cardinality * parent . Selectivity)) ;
12 }
13 public Node BuildAlgebra (Plan plan) {
14 Node newNode;
15 if (queryOptimizer . ReconstructionTable . TryGetValue(plan , out newNode))
16 return newNode;
17
18 Node inputLeĕ = plan . Children [0]. Rule . BuildAlgebra (plan . Children [0]) ;
19 Node inputRight = plan . Children [1]. Rule . BuildAlgebra (plan . Children [1]) ;
20
21 newNode = newNode() { OperatorType = parent .Node.OperatorType };
22 newNode.Children.Add(inputLeĕ) ;
23 newNode.Children.Add(inputRight) ;
24 newNode. Properties = parent .Node. Properties ;
25
26 queryOptimizer . ReconstructionTable [plan] = newNode;
27 return newNode;
28 }
29 }

7
Current State

In this chapter, we present the current state of our optimizer implementation. We start out
by summarizing what we have achieved, before talking about the issues we have identiđed and
proposed solutions. Finally, we present a series of sample runs of the optimizer.

7.1 Results

In summary, we have implemented a running optimizer. As of now, it does not consider useful
orderings, the costmodel is fairly simple and it only supports three operators. Nevertheless, it is
running and able to produce optimal plans (as shown in this chapter) and tackles the important
problem of join ordering.

It is also based on an architecture which addresses the design goals introduced in Sec-
tion 5.1. It is extensible and the rule architecture enables support for arbitrary cost models
and pre- and post-processing, while the cost model is external to the optimizer itself. ăe de-
sign is documented in this report and exploits the object-oriented features of C#. Further, the
design supports what we plan to implement in the future, like DAG-structured query plans,
useful orderings and support for arbitrary operators. Its performance is acceptable, although
not the best in its class, since this has not been the primary focus.

We have identiđed a few issues and have proposed solutions to them, as explained in Sec-
tion 7.2. Performance is a challenge to all query optimizers because the general problem is
exponential in nature. We plan to introduce heuristics to address the problem.

We believe we have created a solid foundation for the further work in our master thesis next
semester.

7.1.1 Performance

Since the time spent on query optimization is included in the query response time, and thereby
the đnal response time to the user of the application, it is important that the query optimizer
is performing well. ăe problem can be remedied somewhat by caching query plans, but still,
whenever a new query is to be run, itmust be optimized. Response time is especially important
in our case with MARS, as search engine users generally expect short response times.

At the same time, the problem of query optimization (including join enumeration) has
exponential complexity with respect to the number of relations if not putting any restrictions
on the search space. ăerefore, the optimizer needs to be aware of its own expected run time
and be able to switch to alternative strategies which runmore quickly, butmay yield potentially
suboptimal plans. Examples of such strategies are to only consider leĕ-deep plans, or switch to
non-exhaustive heuristics when the expected complexity is too great.

66 Chapter 7. Current State

1

10

100

1000

10000

0 2 4 6 8 10 12 14

D
ur

at
io

n
[m

s]

Number of relations

Bushy-chain
Leftdeep-chain
Bushy-star
Leftdeep-star

Figure 7.1: Plan generation for chain and star queries, bushy and leĕ-deep, average of 100 runs.

1

10

100

1000

10000

0 2 4 6 8 10 12 14

D
ur

at
io

n
[m

s]

Number of relations

Bushy-chain
Leftdeep-chain
Bushy-star
Leftdeep-star

Figure 7.2: Same as Figure 7.1, without reachability caching.

We cannot give a complete picture of the performance of our optimizer since it only sup-
ports joins and selections at this stage, butnevertheless, wehavedone someperformance testing
on raw join reordering. Figure 7.1 shows time spent optimizing plotted against the number of
relations. Star queries are queries where all relations 1..n are joined to relation 0, while in chain
queries, relations are joined in a chain, ie. 0-1, 1-2, 2-3 and so on. When not considering cross
products, the former takes longer to optimize, since the number of valid orderings is greater
than for chain joins. ăe queries optimized only include joins. A real world query is likely to
include selections, grouping and orderings, which will increase the size of the search space and
thereby the time spent optimizing.

ăe plot clearly shows that bushy plans have higher complexity and take longer to opti-
mize than leĕ-deep plans. Further, it also shows that star queries are more complex than chain
queries, as expected. We consider anything close to or above one second to be too long, which
suggests that, at its current state, enumerating bushy plans should be abandoned for > 8 re-
lations (possibly lower). Enumerating leĕ-deep plans is feasible up to around 12 relations,
which also happens to be the default number at which PostgreSQL switches to a genetic al-
gorithm [Pos08a]. ăis is also the limit mentioned for non-parallel optimizers in [HKL+08],
so we are not too far from what is regarded as accepted performance. We can see that we have
a “bump” in the graph around 5 relations. We cannot explain what this is, but it may be an
artifact from garbage collection or memory/cache locality.

Figure 7.2 shows the same timings, but now with reachability caching (as explained in the
list in Section 5.5) disabled. We can see that this results in better run times for bushy enu-
meration, especially for more than 7 relations. Performance for leĕ-deep plans is marginally
decreased (by 50-100ms), but this is because leĕ-deep enumeration does not generate as many

7.1. Results 67

unreachable plans as bushy enumeration does.
Since our design is based on [Neu05], it is interesting to compare our performance to what

was reported there. He does not explicitly state it in the context of the graph, but later in his
report he mentions experiments run on “a 2.2 GHz Athlon64 system running Windows XP”.
Neumann has only looked at bushy plans, and his results can be seen in Figure 7.3. He reports
around 1 ms run time for 7 relations, increasing exponentially to around 40 ms for 9 relations.
His graph shows a straight line on a logarithmic scale, while ours looks exponential even on a
logarithmic scale. We see around 40 ms for 7 relations, increasing (more) exponentially to 730
ms for 9 relations. In other words, we see the same exponential increase in both graphs, but
ours come two relations “earlier” and is more exponential.

Figure 7.3: Plan generation performance as reported in [Neu05].

ăis does not look too good on our part, but we believe there are multiple reasons. First,
Neumann’s implementation is probably more optimized and ređned than ours. He may also
do some logical optimizations (as opposed to just code optimizations) we do not. We have not
spent much time optimizing our solution, as we wanted to get the design principles right đrst.
Second, we only do basic cost-based pruning, and can probably improve our solution here.
Addressing these points will be one of the tasks for the upcoming semester. See Section 7.2.1
for details.

Our performance tests were conducted on a 2.0 GHz Intel Core Duo (but the optimizer
is single threaded, so far) on .NET Framework 3.5 SP1 on Windows Vista. We have not mea-
sured memory usage accurately, but by inspecting the memory use of the optimizer process
while running, we see approximately 50MB for the largest queries (9-15 relations), less for the
smaller.

We have not integrated our optimizer with MARS at this stage so we have no execution
statistics to present. Still, we feel conđdent that queries optimized by our optimizer will be
able to execute faster than non-optimized queries. Execution performance will be evaluated in
the upcoming semester.

Proöling

To get an overview of where in the code the bulk of the time is spent, as well as to identify any
performance bottlenecks, we have done a few prođler runs of the optimizer in action. ăis is
important to be able to optimize existing code, but also helps writing performant code in the

68 Chapter 7. Current State

future. Figure 7.4 shows a sample run using the ANTS Prođler [Red08] when performing join
ordering of 9 relations.

Figure 7.4: Prođler run of a 9 relation chain join query.

ăe đgure lists the methods where the most time was spent during execution, along with
their hit counts. ăe đrst four lines is just the entry path into the optimizer, and is not that in-
teresting. On lines 4-6we can see thatmost of the timewas spent inQueryOptimizer.GeneratePlans
and JoinRule.(Internal)Search. ăis is expected, as it is between these two methods the plan
enumeration occurs. We can also identify that GeneratePlans and BitSet operations are the
most frequently called methods in the system.

As an example, early prođler runs showed that a signiđcant amount if timewas spent in our
BitSet implementation. Bymaking BitSet operate onwhole ints (32 bits) instead of single bits,
wewere able to almost double the performance. We plan to use prođling as a tool continuously
through or project to make sure the code we write performs well.

7.2 Identiöed Issues and Suggested Solutions

7.2.1 Exhaustive Enumeration

Currently, our optimizer is close to exhaustive within the limitations set on the search space
and only employs very limited cost-based pruning. Currently we can control whether bushy or
only leĕ-deep plans are considered, but this choice is currently hard-coded in the source code.
At its current performance, the optimizer becomes to slow for≥8 relations for bushy plans and
≥12 for leĕ-deep plans (where too slow is≥200ms).

According to our fast-representative, more than twelve relations are not too common in
MARS queries. Nevertheless, we want to look into ways of addressing this problem.

7.2. IdentiĖed Issues and Suggested Solutions 69

Suggested Solution: Heuristics and Cost-based Pruning

One obvious idea is tomake the choice between bushy and leĕ-deep plans at runtime based on
the query complexity, but this can lead to suboptimal plans. It is probably a better idea to try
and increase the performance of bushy enumeration.

We see cost-based pruning as a good way to do this. ăe idea is to do incremental costing
during plan generation, all thewaymaintaining a upper cost bound equal to the best plan found
so far for a given subproblem. Whenever a new exploration task exceeds this bound, it can not
possible yield a better plan and is aborted.

For basic cost-based pruning, inĖnity is used as the initial bound. A better strategy is to
try and achieve a tighter cost bound to start with. ăe simplest way is to use the cost of the
canonical plan (the query directly translated into a operator graph). A better way is to employ
various heuristics to quickly construct a much better plan than the canonical plan and use the
cost of this plan as the initial cost bound.

7.2.2 Predicate Splitting

Currently, a selection operator with its entire predicate is treated as a single unit. ăis becomes
a problem when the predicate should be split and moved to different parts of the operator
graph. For instance, consider the query in Figure 7.5a. If the selection expressionwas Id1 < 50

&& Name2 = ”Foo”, a likely optimization would be to split it (it can be splitted directly since it
is in conjunctive normal form) and push each predicate down through the join, right aĕer the
đle scans in both inputs.

In our current implementation, the optimizer will not be able to do this, since we have not
implemented expression parsing and splitting.

Suggested Solution

ăe đrst thing that needs to be done is to parse the selection expression and split it. MARS
has routines for parsing such expressions, which we plan to leverage. It may also be necessary
to simplify it or apply De Morgan’s laws multiple times before splitting it. ăis can be done
during the pre-processing stage of optimization. ăen the selection operator would be split
into multiple consecutive operators, which can be freely moved around (given that the query
semantics are not changed). However, this could lead to an increase in search space size, so we
maywant tomake the selection rule aware of the possibility to split the predicate in some other
way.

We still need to determine the best approach, but it certainly possible to solve.

7.2.3 Unreachable Plans

Consider the query in Figure 7.6, which joins four relations. Following the process described
in 5.5.4, the global goal of this query will be determined to be
Goal = {Id0, Id1, Id2, Id3, ◃▹0,1, ◃▹1,2, ◃▹2,3}. We have ignored theNameXproperties. ăe
topmost join has the predicate [Id2] = [Id3], and therefore Produced = {◃▹2,3}, Re-
quiredLeě = {Id2}, RequiredRight = {Id3}.

Following the algorithm for the join rule, described in 6.3.6, the rule will try to satisfyGoal
by exhaustively splittingwanterProperties = Goal− (Produced∪RequiredLeě∪RequiredRight)
= {Id0, Id1, ◃▹0,1, ◃▹1,2} between the leĕ and right input. It will therefore, for instance, at
one moment try to get {Id2, ◃▹0,1, ◃▹1,2} as its leĕ input and {Id0,Id1,Id3} as its right. Obvi-
ously, this is not possible since ◃▹0,1 and ◃▹1,2 requires Id0 and Id1 and the plan generator will

70 Chapter 7. Current State

immediately returnwith no plans. Still, it takes a signiđcant amount of time to try it, especially
when the number of operators and properties become large.

Suggested Solution

To prevent this from happening, we plan to pre-compute transitive closures on the required
properties of all rules instantiated during the preparation phase. ăis will be implemented
as an array with length equal to the number of bit properties, where element i contains the
minimum set of bit properties required to produce property i.

For instance, for the example above, the array entry for ◃▹0,1 would be {Id0,Id1}. ăis
array would be used by the different rules to ensure that they never ask for something that is
guaranteed to be impossible, thereby saving time. For instance, the rule would consult this
array before iterating over all the different ways of splitting the wantedProperties bitset.

7.3 Sample Query Optimizations

To show that we have a running query optimizer, we include some sample query optimizations
of a some selected queries that illustrate a few of the optimizer’s current capabilities. For most
samples, we include a before and aĕer operator graph.

Note that all đgures used in this section have been auto-generated by the query optimizer
on the Ĕy — nothing is “by hand”. To do this, we use a graph visualization soĕware called
Graphviz [AT 08]. In short, we export the optimizer’s internal node structure to the dot lan-
guage (a sample can be found in SectionA.2). ăenwe call the dot tool, which generates a png
image (or any other format). Although the graphs below only includes plan costs, cardinalities
and a few other things, they can also bemade to include attributes, operator properties and any
other details. Being able to easily visualize the plans makes it substantially easier to interpret
the changes done by optimizer.

7.3.1 Select Through Join

ăe đrst sample is a simple SPJ-query (select, project, join), involving two relations and one
selection. ăe two relations are joined on their id attributes and then đltered on Id1 < 50.
ăis would roughly correspond to the following SQL query.

1 SELECT * FROM R1
2 JOIN R2ON R1.Id1 = R2.Id2
3 WHERE Id1 < 50

As we can see on the before graph in Figure 7.5a, the selection is set up to be performed
aĕer the join. In general, it is a good idea to push such selections through and before any joins
to limit the tuple count as early as possible. If we had an index on the đltered attribute, we
could use it to further lower the cost of the query.

Figure 7.5b shows that the optimizer chose tomove the selection before the join, since this
lowered the input cardinality for the join, thereby lowering the cost of the join and the entire
query. However, it is not always possible or advantageous to do so. First, if the đlter expression
of the select operator is referencing attributes from both input relations, it can be harder to do.
An expression like Id1 < 50 && Name2 = ’Bob’ would be đne, as we could split it and push
one part down each join input. But expressions like Id1 < 50 || Name2 = ’Bob’ or Id1 <

Id2 would be harder, since they cannot be split and would have to be evaluated aĕer the join.
Second, if the join operator is not a hash join, but a nested loop join, we may want to have

the join utilize any appropriate index on the relation instead of having the selection do it.

7.3. Sample Query Optimizations 71

(a) Before optimization (b) Aĕer optimization

Figure 7.5: Pushing selection through join.

ăird, if the selection predicate is expensive to evaluate (for instance an expensive function
call) and not very selective, it may be more cost effective to evaluate it aĕer the join, especially
if the join is estimated to be very selective. We have chosen not to show this, as the aĕer graph
would be equal to the before graph.

ăis query was optimized in 2.6 ms.

7.3.2 Join Ordering

One of themost important aspects of the optimizer is the capability of ordering joins to get the
cheapest planpossible. In this example, we showhowour optimizer đgures out the optimal join
order for a simple querywith three joins. We only have đle readers available to us, but the query
would roughly correspond to the following SQL query. See Section A.6 for the automated
optimizer test that was used to generate the following đgures.

1 SELECT * FROM R0
2 JOIN R1ON R0.Id0 = R1.Id1
3 JOIN R2ON R1.Id1 = R2.Id2
4 JOIN R3ON R2.Id2 = R3.Id3

ăe output cardinality for a join A ◃▹ B is given by |A| × |B| × S (A, B), where S (A, B) is
the selectivity of the join. ăe cost C (A ◃▹ B) for a join is given by C (A)+C (B)+ |A ◃▹ B|, that
is, the sum of the children costs plus the cardinality of the join.

ăe cardinalities of the input relations are |R0| = 10, |R1| = 20, |R2| = 20, |R3| = 10.
ăe absolute values are not interesting, but the ratios are — the numbers could be in million
rows. ăe selectivities of the joins areS (R0, R1) = 0.01,S (R1, R2) = 0.5,S (R2, R3) = 0.01,
while the costs of the FileReaderScans are |R| × 0.01 each (low, so we can focus on the join
ordering for now).

72 Chapter 7. Current State

Figure 7.6: Query before join ordering optimization.

As input to the optimizer, we give it theworst case plan, ((R1 ◃▹ R2) ◃▹ R0) ◃▹ R3, as shown
in Figure 7.6. We can calculate the cost as follows, which we can see agrees with the đgure.

C (R1) + C (R2) + C (R0) + C (R3) + C (R1 ◃▹ R2) + C (R1 ◃▹ R0) + C (R2 ◃▹ R3)

= 0.2 + 0.2 + 0.01 + 0.01 + 200 + 20 + 2 = 222.06

First, we tell the optimizer to only consider leĕ-deep plans. It is not any point in doing so
for this small query in real life, but for larger queries, we need to support leĕ-deep exploration.
ăe result can be seen in Figure 7.7. ăe optimizer has chosen to switch the order of the joins
R0 ◃▹ R1 and R1 ◃▹ R2, as R0 ◃▹ R1 hasmuch higher selectivity and thereby limits the cardinality
of the temporary result in between them, keeping the cost down.

One may wonder why the other very selective join was not moved down. ăe reason is
that this is a chain query where the result from the bottommost join is R0, R1. Neither R0 nor
R1 can be joined directly with R3 (R3 must be joined with R2 đrst), so putting this join as the
second join from the bottom would give us a cross product. ăis is certainly not a good idea,
as cardinality and thereby cost would increase.

Still, this plan has a much better cost of only 24.06 compared to 222.06. ăe query was
optimized in 10.5 ms for the bushy plan and 2 ms for the leĕ-deep plan.

Now, we tell the optimizer to search for any plan, including bushy plans. ăis dramatically
increases the search space (see Section 1.6.1 for details), but it is not a problem for this small
query.

7.3. Sample Query Optimizations 73

Figure 7.7: Query aĕer optimization, only considering leĕ-deep plans.

ăis time, the optimizer can do what it could not the last time. It now selects to do both
of the selective joins đrst, then joining the result together to get the đnal result. ăis turns out
to be even better, yielding a cost of only 6.06. See Figure 7.8

As we can see, the expected cardinality for the query is the same in both cases.

7.3.3 Multi-Query Optimization

As mentioned before, MARS supports multi-queries, which means that our optimizer should
support optimizing such queries. So far, we have been focusing especially on this, but we have
been careful to design and code to support it.

At this stage, the optimizer is able to reuse common subexpressions and create DAG-
structured plans for multi-queries, but they are not optimal, merely a positive consequence of
the design of the optimizer and physical plan generation routine. ăey are not optimal in the
sense that the optimizerwill not currently recognize common subexpressions and share equiva-
lent subplans unless they are completely identical, and the costmodel does not currently honor
such plans as it should.

Still, we include a sample plan that may not be the optimal one, as an example of what is to
come. See Figure 7.9.

74 Chapter 7. Current State

Figure 7.8: Query aĕer optimization, also considering bushy plans.

Figure 7.9: Sample multi-query utilizing common subexpressions.

7.3.4 Large Query with Selection

Figure 7.10 shows what larger queries might look like. ăis query is a chain join query with
7 relations, 6 joins and one selection (highlighted). We have included it mostly as a curiosity,

7.3. Sample Query Optimizations 75

Figure 7.10: Large bushy query aĕer optimization, including selection (highlighted).

but it is worth noting that the optimizer found that a bushy plan was the best one, and that the
selection was pushed as far down as it gets (due to the đlter being Id3 > Id5).

ăe optimizer spent 24 ms optimizing this query, doing 654 rule appliances, generating
482 plans (roughly).

76 Chapter 7. Current State

8
Conclusion and Further Work

8.1 Evaluation

In the introduction,we statedmultiple goals. ăeđrst onewas to get a broad overview of ongoing
efforts within the query optimization research Ėeld. Wehave read quite a few papers and studied
the source code of one leading open source database system and have gotten an overview over
the different approaches to query optimization — especially rule based optimization.

ăe next goal was to analyze the various approaches and techniques and justify their suitabil-
ity for a future query optimizer forMARS.Wehave concluded that rule based optimization is the
way to go. We have decided to go for a combination of transformation based and construc-
tion based optimizer to get the best of both worlds; transformation for pre/post-processing,
constructive for plan generation.

We also aimed to devise a skeleton architecture and design for an optimizer that is clean and
extendable, as well as a foundation to implement the techniques found in the previous point. We
believe we have found a design that satisđes the design goals. ăis is explained in Section 7.1.
We have not laid out the design for everything, but explain why we can extend it to support
things like orderings andDAGs. We also have a running optimizer based on the design, which
shows its suitability and serves as a good foundation for further work. Even though much of
the design of the plan generation step is based on [Neu05] and [NM08], we claim to havemade
a few enhancements, as mentioned in Section 5.5.

Finally, we wanted to implement small parts of the architecture and implement some simple
optimization rules. ąe implementation should lay the foundations for the work in the upcoming
master thesis, and not be so simple it needs to be replaced. We have a running optimizer than can
do join ordering and selection pushdown. It also includes a simple transformation based rule.
We also conducted performance tests that show acceptable performance, and we were able to
visualize query plans, which is great for demonstration and debugging. On one hand, we have
only implemented the most fundamental parts of the design, but they are still needed in the
full implementation, so nothing will be thrown away. We still have a lot of work to do, but as
can be seen in the following section about further work, we have the plans ready.

We now summarize why we believe our work is of great use to fast and MARS.

MARS has no optimizer. Currently, MARS does not employ an optimizer. Queries must be op-
timized by hand, directly using physical operators. By implementing an optimizer, we
can do this automatically.

Declarative queries. An optimizer enables the user to write queries that are truly declarative
in any language, for example SparQL, not only MQL (MARS’ physical query language).

78 Chapter 8. Conclusion and Further Work

Integrable withMARS. Although the optimizer is not currently integratedwithMARS, we have
had access to an early version of MARS to avoid creating something that does not playwell
it. Both the optimizer and MARS are implemented in C# on .NET.

Extensibility. fast wanted an optimizer that is extensible, amongst other to support future
operators. Our optimizer is extensible in terms of rules and cost model.

Future DAG-support. MARS supports DAGs, and so will our optimizer with a little bit of
work.

Summarized, wewould saywe have reached the goals stated and are happy about the result.
Not only do we have a running optimizer, but we have also documented the important parts
of its inner workings. We are conđdent that our efforts during this project will pay off in the
upcoming master thesis.

8.2 Further Work

In this section, we summarize further work for this project. Some of it, especially the đrst four
sections, is work that needs to be done before the query optimizer actually starts becoming
useful. ăe last four sections include possibilities it would be interesting to pursue, but is not
critical.

For the upcoming semester, we hope to be able develop our current prototype into some-
thing that is integrated with MARS and is actually useful.

8.2.1 Integration with MARS

We have had access to a compiled version of MARS, but we have not currently integrated the
optimizer with it. ăis is due to: 1) It was not a big gain at this stage — we need to get the
optimizer design settled đrst. 2) It is smart to have as few dependencies as possible to isolate
errors and easy debugging. 3) We have had some problems with our very early build MARS.

Still, it has been very useful to have it available to be able to create a design that is easy
to integrate with MARS at a later stage. We plan to look at integration with MARS in the next
semester. ăings that need to be looked at in this context:

Logical operators. Currently, MARS only has physical operators (i.e. HybridHashJoin and
MergeJoin, not Join). ăis does not allow for a truly declarative query language. We
need to introduce logical operators.

System catalogs. We will need to integrate the optimizer with the system catalogs in MARS
to enable it to look up information on relations, indexes and create, store and look up
statistics.

Plan caching. ăey query optimizer should cache generated query plans. However, we will
need information from MARS to invalidate the cache, for instance when the schema
changes. ăis can be quite tricky, for example due to different parameter selectivity.

Query handover. We already know how queries are represented in MARS’ internal data struc-
tures, but we will need to determine howwe actually pass the queries to and fromMARS.
Should we use MARS’ (half-physical) parser or roll our own?

SparQL. Another pair of students are implementing a SparQL parser for MARS. It may be
of interest to cooperate with them, as they can have solved the issue mentioned in the
previous point.

8.2. Further Work 79

8.2.2 Ordering and Grouping

In its current implementation, the optimizer does not take orderings and groupings into con-
sideration. We will have to implement this to make the optimizer useful. [Neu05] describes a
state machine to do this, which we plan to implement.

8.2.3 Operators

Support for more operators will need to implemented to enable the optimizer to handle the
most common queries. Speciđcally, this includes sort, map, project and group by. We also
need to implement predicate splitting as described in 7.2.2 to enable more advanced selection
optimizations.

We also need to introduce logical operators (like Join) intoMARS to enable true declarative
queries.

8.2.4 Better Cost Model

ăe currently implemented cost model is very simple and does not take random vs sequential
reads into account, let alone other dimensions like memory usage, CPU usage, network I/O
cost, parallelization opportunities and so on. We will at least need to implement proper I/O
modeling for it to be usable.

ăis also includes the use of histograms to determine the selectivities and expected tuple
counts for queries and index lookups, as well as using system catalogs do determine tuple sizes.

8.2.5 Full Support for DAGs

We have limited support for DAGs today, but the architecture is extendable to support it. To
do so, we need to implement detection of share equivalence andmake the optimizer recognize
common subexpressions. Some effort is also required to integrate this with MARS’ execution
model.

8.2.6 Optimizations

We have not focused too much on performance optimization except some prođling, so this is
somethingwewould lookmore into later. Wehave alreadymentionedheuristics and cost based
pruning/incremental costing in Section 7.2.1 and transitive closures in Section 7.2.3. Further,
we would try to generally optimize our code and look for logical optimizations (optimize the
logic of the optimizer, not only code) as well.

8.2.7 Investigate Bottom-up

As explained in Section 2.5.3, we have settled for a top-down approach. [Neu05] says that
bottom-up may be beneđcial for larger queries, see đgure 7.3. It might be wise to spend some
time investigating the possible performance gains a bottom-up approach would give, as con-
verting the rules to bottom-up is not too hard. A sketch for the selection rule bottom-up is
given below.

Listing 8.1: SelectionRule.SearchBottomUp(), very simpliđed
1 public override void SearchBottomUp(PlanSet plans , BitSet current) {
2 foreach (Plan inputPlan in plans) {
3 Plan selectionPlan = new Plan(inputPlan) { Rule = this };
4 plansCache [current | Produced]. AddPlan(selectionPlan) ;

80 Chapter 8. Conclusion and Further Work

5 }
6 }

8.2.8 Opportunities for Planner Parallelism

Currently, we cannot domuch over 12 relationswithin a feasible amount of time on one thread
without limiting the search space. ăis can lead to suboptimal plans.

ăe current trend in processor development, is to add more cores, and to use more pro-
cessors. ăe raw clock speed does no longer increase substantially. Because of this, it can be
smart to look at parallelism. ăemost prominent problemswith parallelization are data depen-
dencies and distributing work items between threads. [HKL+08] has achieved close to linear
speedup for dynamic programming of join ordering and has managed to increase the number
of relation for bushy up to approximately 16 within the second.

Our algorithm is top-down, so the method used in [HKL+08] is not directly applicable,
butwe still have some ideas onhow todo it. Insteadofwaiting for theplan generator toproduce
each plan, subplan requests can be queued to a thread pool. Pre-/post processing steps are
harder to parallelize because of the linear nature, but they are not the greatest contributions to
optimization time anyway. Also, it is not too complex to convert our optimizer to a bottom
up one, which should make it easier to apply the method used in the above paper.

8.2.9 Parallel Execution and Costing

It is not only the optimization of query plans that can be parallelized — the execution of them
can as well. Most high-end commercial DBMS-es produce parallel plans when it is beneđcial.
For example, sorting can be parallelized, or different parts of the query graph can be run of
different threads. Parallelism does not only constrain itself to a single processing node. It is
quite common to employ parallelized execution between nodes in a cluster for search engines.
MARS also supports this.

To create parallel plans, the optimizer must both know which operations can be paral-
lelized, and the cost model must honor such plans, as they will be executed more quickly.
However, the cost model may change if the system is under heavy load, and there is no gain
in parallelizing the query, since all nodes are swamped anyway.

ăe current cost model interface cannot express this, so we will need to develop this fur-
ther to enable the optimizer to consider parallel plans. [GHK92] mentions several techniques
for query optimization of parallel execution. We may want to look into this in the upcoming
semester.

A
Code Samples

We have chosen not to include the full optimizer code base in the report, as it counts approx-
imately 3500 lines of code. We refer to the accompanying CD for the full code base, which
should be ready to compile and run. See Appendix B for a description of the CD-ROM con-
tents.

ăe rest of this appendix include selected code samples that were to long to include in the
main part of the report.

A.1 Rule Binder Initialization

As explained in 6.1, the optimizer does not know the rules at compile time, meaning that new
rules can be added without changing the optimizer core at all. To be able to do this, is uses
reĔection, which is a feature in .NET for reasoning about program metadata.

Tobe taken into consideration for optimizing, all the rules have todo is tohave a rule binder
that declares the [RuleBinder] attribute, as well as implements IRuleBinder. ăen they have
to be placed in an assembly (dll, .NET equivalent of Java JARs) that is visible to the optimizer.

At optimizer startup, InitRuleBinders is called, and all classes in all known assemblies are
enumerated. If the class declares the [RuleBinder] attribute, it will be saved in a list for later
use. ReĔection used like this is somewhat expensive, but since this only happens once at system
startup, it is not a problem.

ăen, during the preparation phase of each query, all the previously found rule binders are
instantiated and used for instantiating rules. Note that the optimizer never cares about where
or how the rule was implemented.

Listing A.1: Rule binder initialization.
1 private static void InitRuleBinders () {
2 ruleBinderTypes = new List <Type>();
3 foreach (Assembly assembly in AppDomain.CurrentDomain.GetAssemblies())
4 foreach (Type type in assembly .GetTypes ())
5 if (Attribute .GetCustomAttribute(type , typeof (RuleBinderAttribute)) != null)
6 ruleBinderTypes .Add(type) ;
7 }
8
9 private List <IRuleBinder> GetRuleBinders () {

10 List <IRuleBinder> ruleBinders = new List <IRuleBinder>() ;
11 foreach (Type type in ruleBinderTypes) {
12 IRuleBinder binderToAdd = (IRuleBinder) Activator . CreateInstance (type) ;
13 ruleBinders .Add(binderToAdd);
14 }

82 Appendix A. Code Samples

15 return ruleBinders ;
16 }

A.2 dot Language Sample

ăe following listing shows the GraphViz [AT 08] dot language used by the optimizer to vi-
sualize the operator graphs. ăis example is taken from the query in Section 7.3.1. For exam-
ple, 28517321 [label=”Query”,shape=oval] is the declaration of the topmost Query opera-
tor node, while 1547500 -> 28517321 [label=”Cardinality: 12000000 Subplan Cost:

22003010”] is the edge leading into it. ăe numbers are just unique identiđers for each node.

Listing A.2: dot đle for query in Section 7.3.1.
1 digraph test {
2 rankdir =BT
3 labelloc =t
4 label =”Aĕer␣Optimization”
5 28517321 [label =”Query”,shape=oval]
6 1547500 [label =”HybridHashJoin␣ Selectivity :␣0.006” , shape=oval]
7 51067503 [label =” Select ␣ Selectivity :␣0.001” , shape=oval]
8 7506019 [label =” FileReader ␣var/data /Adr. txt (Id1 ,Name1)”,shape=box]
9 7506019−> 51067503 [label =” Cardinality :␣1000000␣Subplan␣Cost:␣1000”]

10 51067503−> 1547500 [label =” Cardinality :␣1000␣Subplan␣Cost:␣10001010”]
11 46372056 [label =” FileReader ,␣var/data /Adr. txt (Id2 ,Name2)”,shape=box]
12 46372056−> 1547500 [label =” Cardinality :␣2000000␣Subplan␣Cost:␣2000”]
13 1547500−> 28517321 [label =” Cardinality :␣12000000␣Subplan␣Cost:␣22003010”]
14 { rank = same; 7506019;46372056}
15 }

A.3 Selection Rule

To show how a rule is actually implemented in full, we have chosen to include the full imple-
mentation of the simplest search rule, SelectionRule. ăis rule constructs selection operators.

SelectionRule is a unary rule (only one input), and therefore inheritsUnaryRule. ăe latter
implements the basic search strategy for unary rules: construct all plans where the rule itself is
the topmost one. UnaryRule inherits from AbstractSearchRule which implements basic func-
tionality required for all search rules.

We have also included its rule binder, SelectionRuleBinder, which is responsible for instan-
tiating the rule. it inherits from AbstractRuleBinder which implements functionality needed
for most rule binders. We have included all the base classes. ăe code is an exact copy of the
source code.

Listing A.3: SelectionRule implementation.
1 /// <summary>ăis rule is reponsible for constructing selection operators in query plans .</

summary>
2 public class SelectionRule : UnaryRule {
3 public SelectionRule (QueryOptimizer queryOptimizer) : base (queryOptimizer)
4 { }
5
6 /// <summary>Cost of evaluating the predicates for each record .</summary>
7 public double PredicateCost { get ; set ; }
8 /// <summary>User friendly name for this rule .</summary>
9 public override string Name { get { return ” Selection ” ; } }

10

A.3. Selection Rule 83

11 /// <summary>Updates the properties of the plan (costs , ordering , sharing) .</summary>
12 /// <param name=”plan”>ăe plan to update .</param>
13 public override void UpdatePlan(Plan plan) {
14 plan .Rule = this ;
15 // Todo: Sharing , ordering
16 CalculateCosts (plan) ;
17 }
18
19 private void CalculateCosts (Plan plan) {
20 BasicCost childCost = (BasicCost)plan . Children [0]. Costs ;
21 BasicPlanSetState childState = (BasicPlanSetState)plan . Children [0]. PlanSet . State ;
22 plan . Costs = childCost + new BasicCost (childState . Cardinality * PredicateCost) ;
23 }
24
25 /// <summary>Builds the Node in the physical algebra graph for this rule and calls
26 /// its children recursively .</summary>
27 /// <param name=”plan”>Plan to build algebra for .</param>
28 public override Node BuildAlgebra (Plan plan) {
29 Node newNode;
30 // Check if we have already constructed this plan
31 if (queryOptimizer . ReconstructionTable . TryGetValue(plan , out newNode))
32 return newNode;
33
34 // Call recursively
35 Node input = plan . Children [0]. Rule . BuildAlgebra (plan . Children [0]) ;
36
37 // Create node
38 newNode = newNode() { OperatorType = Node.OperatorType };
39 newNode.Children.Add(input) ;
40 newNode. Properties = Node. Properties ;
41 newNode[”SubplanCost”] = plan . Costs ;
42 newNode[”Cardinality ”] = ((BasicPlanSetState)plan . PlanSet . State) . Cardinality ;
43
44 queryOptimizer . ReconstructionTable [plan] = newNode;
45 return newNode;
46 }
47 }

Listing A.4: Rule binder for SelectionRule.
1 /// <summary>Rule binder for SelectionRule .</summary>
2 [RuleBinder]
3 public class SelectionRuleBinder : AbstractRuleBinder < SelectionRule > {
4 /// <summary>Node pattern to match in the operator graph during initialization .</summary

>
5 public override AbstractNodeMatcher Pattern {
6 get { return newNodeTypeMatcher(” SelectOperator ”) ; }
7 }
8
9 /// <summary>Phase 2, initialize rules , set produced/ required properties .</summary>

10 public override void InitializeRules () {
11 base . InitializeRules () ;
12 foreach (SelectionRule rule in base . GetRules ()) {
13 if (rule .Node[” Selectivity ”] != null)
14 rule . Selectivity = (double) rule .Node[” Selectivity ”];
15 if (rule .Node[” PredicateCost ”] != null)
16 rule . PredicateCost = (double) rule .Node[” PredicateCost ”];
17
18 rule . Required = new List <BitSet >() { QueryOptimizer. BitSetManager .Empty };
19 IRecordTypeDescriptor inputFieldTypes = rule .Node. InputTypeDescriptors [0];

84 Appendix A. Code Samples

20 string expression = ((ExpressionProperty) rule .Node[” Filter ”]) . Expression ;
21 // Todo: ăis can match substrings and is not reliable .
22 // We’re planning to use Fast ’ s parser to do this .
23 foreach (FieldOccurrence đeld in inputFieldTypes)
24 if (expression . Contains(đeld .Name))
25 rule . Required [0]. AddAttribute (đeld .Name);
26 }
27 }
28 }

Listing A.5: UnaryRule implementation.
1 /// <summary>General base class for all unary rules (one input) , offering
2 /// basic search functionality .</summary>
3 public abstract class UnaryRule : AbstractSearchRule {
4 public UnaryRule(QueryOptimizer queryOptimizer) : base (queryOptimizer)
5 { }
6
7 /// <summary>Guides the search for this rule instance . Offers the basic search

functionality
8 /// for unary rules : generating all possible plans with this rule on the top .</summary>
9 /// <param name=”plans”>PlanSet to add plans to (also deđnes goal properties) .</param>

10 /// <param name=”limit”>Abort the search if passing this cost limit (pruning) .</param>
11 public override void Search (PlanSet plans , ICost limit) {
12 /* Get the possible input plans , i . e . plans with needed properties ,
13 * except the ones we produce ourselves .
14 */
15 # if DIAGNOSTICS
16 Debug. Print (”UnaryRule␣producing␣{0}␣ searching ␣for␣ {1}. ” , Produced , plans . Properties

− Produced) ;
17 # endif
18 PlanSet input = queryOptimizer . GeneratePlans (plans . Properties − Produced, limit) ;
19 if (input == null)
20 return ; // No plans
21
22 if (plans .Count == 0) {
23 // First plan , so set some state .
24 plans . State = new BasicPlanSetState () {
25 Cardinality = ((BasicPlanSetState) input . State) . Cardinality * Selectivity ,
26 TupleSize = ((BasicPlanSetState) input . State) . TupleSize
27 };
28 }
29
30 // Add each input plan to the PlanSet , updating their properties .
31 foreach (Plan plan in input) {
32 Plan newPlan = new Plan () ;
33 newPlan.Children = new List <Plan> { plan };
34 UpdatePlan(newPlan) ;
35 plans .AddPlan(newPlan);
36 }
37 }
38 }

Listing A.6: AbstractSearchRule implementation.
1 /// <summary>Base class for search rules , implementing required members and Filter caching

.</summary>
2 public abstract class AbstractSearchRule : ISearchRule {
3 private BitSet ? cachedFilter ;
4 protected QueryOptimizer queryOptimizer ;

A.3. Selection Rule 85

5
6 public AbstractSearchRule (QueryOptimizer queryOptimizer) {
7 this . queryOptimizer = queryOptimizer ;
8 this . Id = queryOptimizer .GetRuleNumber(this) ;
9 this . Selectivity = 1;

10 }
11
12 /// <summary>Node that this rule was instantiated from.</summary>
13 public Node Node { get ; set ; }
14 /// <summary> Selectivity for this rule . 1 for non−limiting rules .</summary>
15 public double Selectivity { get ; set ; }
16
17 #region ISearchRule Members
18
19 /// <summary>Properties produced by this rule .</summary>
20 public BitSet Produced { get ; set ; }
21 /// <summary>List of properties required for this rule .</summary>
22 public IList <BitSet> Required { get ; set ; }
23
24 /// <summary>Automatically generates and caches the Filter property based
25 /// on the Produced and Required properties .</summary>
26 public virtual BitSet Filter {
27 get {
28 if (cachedFilter == null) {
29 cachedFilter = Produced;
30 foreach (BitSet bitset in Required)
31 cachedFilter |= bitset ;
32 }
33 return cachedFilter . Value ;
34 }
35 }
36
37 /// <summary>Determine if this rule is relevant to reach the given goal .</summary>
38 public bool IsRelevantTo (BitSet goal) {
39 return Filter <= goal ;
40 }
41
42 /// <summary>Guides the search for this rule instance .</summary>
43 /// <param name=”plans”>PlanSet to add plans to (also deđnes goal properties) .</param>
44 /// <param name=”limit”>Abort the search if passing this cost limit (pruning) .</param>
45 public abstract void Search (PlanSet planSet , ICost limit) ;
46
47 #endregion
48
49 #region IRule Members
50
51 /// <summary>Id for this rule as given by the optimizer .</summary>
52 public int Id { get ; set ; }
53 /// <summary>User friendly name for this rule .</summary>
54 public abstract string Name { get ; }
55 /// <summary>Updates the properties of the plan (costs , ordering , sharing) .</summary>
56 /// <param name=”plan”>ăe plan to update .</param>
57 public abstract void UpdatePlan(Plan plan) ;
58 /// <summary>Builds the Node in the physical algebra graph for this rule and calls
59 /// its children recursively .</summary>
60 /// <param name=”plan”>Plan to build algebra for .</param>
61 public abstract Node BuildAlgebra (Plan plan) ;
62
63 #endregion

86 Appendix A. Code Samples

64 }

Listing A.7: AbstractRuleBinder implementation.
1 /// <summary>Base class for rule binders , offering common functionality .</summary>
2 /// <typeparam name=”RuleType”>ăe type of rule to bind.</typeparam>
3 public abstract class AbstractRuleBinder <RuleType> : IRuleBinder where RuleType :

IProducerRule {
4 protected List <RuleType> rules = new List <RuleType>();
5 /// <summary>Node pattern to match in the operator graph during initialization .</summary

>
6 public abstract AbstractNodeMatcher Pattern { get ; }
7 /// <summary>Query optimizer initializing the rules , set by the optimizer itself .</

summary>
8 public QueryOptimizer QueryOptimizer { get ; set ; }
9

10 /// <summary>Phase 1, initialize bit property sets .</summary>
11 /// <param name=”matches”>Collection of matching nodes in the operator graph .</param>
12 public virtual void InitializeBitSets (IEnumerable<PatternMatch> matches) {
13 // For each match, instantiate a rule and set properties .
14 foreach (PatternMatch match in matches) {
15 RuleType rule = CreateRule (match. Sources [0]) ;
16 QueryOptimizer. BitSetManager .AddProduced(
17 newHashSet< string>() { BitSetManager . RuleApplied (rule . Id) }) ;
18 rules .Add(rule) ;
19 }
20 }
21
22 private RuleType CreateRule (Node node) {
23 RuleType rule = (RuleType) Activator . CreateInstance (typeof (RuleType) , QueryOptimizer)

;
24 rule .Node = node;
25 node. Rules = new List <IProducerRule>() { rule };
26 return rule ;
27 }
28
29 /// <summary>Phase 2, initialize rules , set produced/ required properties .</summary>
30 public virtual void InitializeRules () {
31 foreach (RuleType rule in rules)
32 rule .Produced = QueryOptimizer. BitSetManager . GetWithValues (
33 BitSetManager . RuleApplied (rule . Id)) ;
34 }
35
36 /// <summary>Phase 3, returns the initialized rules to the optimizer .</summary>
37 public virtual IEnumerable<IProducerRule> GetRules () {
38 return rules . Cast<IProducerRule>() ;
39 }
40 }

A.4 MergeTrimSort Rule

ăis is the full implementation of the MergeTrimSort rule. See Section 6.2.2 for an explana-
tion.

Listing A.8: MergeTrimSort rule implementation.
1 [TransformationRule (TransformationType . Pre)]
2 public class MergeTrimSort : AbstractPreprocessor {
3 public override AbstractNodeMatcher Pattern {

A.5. BitSet 87

4 get {
5 return (newNodeTypeMatcher(”TrimOperator”))
6 .GroupAs(”trim”)
7 .WithChildren(
8 new ZeroOrMore(
9 NodeBehaviourMatcher. All (OperatorBehaviour . SetPreserving |

10 OperatorBehaviour . OrderPreserving)
11 .WithAnyOneParent() // Don’t match a branching node.
12)
13 .WithChildren(
14 (newNodeTypeMatcher(”SortOperator”)) .GroupAs(”sort ”)
15)
16) ;
17 }
18 }
19
20 public override void Fire (PatternMatch match) {
21 Node trimOperator = match.Groups[”trim”]. OnlyMatch;
22 Node sortOperator = match.Groups[” sort ”]. OnlyMatch;
23
24 match.Groups[”trim”]. OnlyMatch = null ;
25
26 int trimOffset = (int) trimOperator [” offset ”];
27 int sortOffset = (int) sortOperator [” offset ”];
28 int đnalOffset = trimOffset + sortOffset ;
29
30 int trimHitCount = (int) trimOperator [” hitcount ”];
31 int sortHitCount = (int) sortOperator [” hitcount ”];
32 int đnalHitCount = −1;
33
34 Debug.Assert (sortHitCount != 0 || trimHitCount != 0,
35 ”ăis␣query␣ will ␣not␣ return␣any␣ results ␣and␣should␣be␣ replaced␣with␣a␣

NOOP.”);
36
37 if (trimHitCount > 0)
38 đnalHitCount = trimHitCount;
39
40 if (sortHitCount > 0)
41 đnalHitCount = Math.Min(đnalHitCount , Math.Max(sortHitCount − trimOffset , 0)) ;
42
43 sortOperator [” offset ”] = đnalOffset ;
44 sortOperator [” hitcount ”] = đnalHitCount ;
45 }
46
47 public override bool Iterative { get { return true ; } }
48 }

A.5 BitSet

BitSet is the implementation of property sets using bit masks as storage. ăis allows for very
compact storage and set operation like union and intersection becomes very fast since they can
operate on the whole bit mask as a unit. We therefore include some selected code snippets to
show how it is implemented.

88 Appendix A. Code Samples

A.5.1 BitSet Implementation

Listing A.9 shows how the data is stored inside the BitSet. ăe bit masks are stored as an array
of ints, data, each element having room for 32 properties (ints are 4 bytes = 32 bits). A separate
member length stores the number of bits in the bit mask that are in use.

Listing A.9: BitSet private data.
1 /// <summary>ăe bits are internally stored as ints . 1 int up to 32, 2 up to 64 etc .</

summary>
2 private int [] data ;
3 /// <summary>Current number of bits stored .</summary>
4 private int length ;

Listing A.10 shows the interface to add and remove properties from the set. It closely re-
sembles any other set implementation. Adding an element X will look up X’s index in the
central BitSetManager class and the set the corresponding bit to true.

Listing A.10: BitSet single property interface.
1 public void Add(string property) {
2 this [manager[property]] = true ;
3 }
4 public void Remove(string property) {
5 this [manager[property]] = false ;
6 }
7 public bool Contains(string property) {
8 return this [manager[property]];
9 }

Listing A.11 shows how the [] operator used in the previous listing is implemented. First,
the correct array index is found by computing index / 32 (remember, each entry has room for
32 properties). ăe offset within the item is found as index mod 32. If reading the value, the
binary value 1 is bit shiĕed offset positions to the leĕ and bitwise intersection (AND) is com-
puted with the stored bit mask. If the result is different from 0, the property is set. ăe pro-
cedure is similar for setting properties, but now the bit shiĕed value is intersected of unioned
into the stored bit mask.

Listing A.11: BitSet internal property implementation.
1 private bool this [int index] {
2 get {
3 // Get the correct array item , AND with 1 bitshiĕed
4 // to the correct position and return if it is not 0.
5 return ((this . data [index / 32] & (((int)1) << (index % 32))) != 0) ;
6 }
7 set {
8 if (value)
9 // OR with 1 bitshiĕed to the correct position .

10 this . data [index / 32] |= ((int)1) << (index % 32) ;
11 else
12 // AND with NOT (1 bitshiĕed to the correct position) .
13 this . data [index / 32] &= ~(((int)1) << (index % 32)) ;
14 }
15 }

To show how efficient whole set operations on BitSets are, we include two of the available
set operators that have been overloaded. ăe đrst one is set intersection between two BitSets.
Intersection is performed by computing bitwise AND between the stored bit masks in both
BitSets, returning a new BitSet with the result. Note that the number of AND operations
carried out is property count / 32.

A.5. BitSet 89

Listing A.12: BitSet set intersection operator.
1 public static BitSet operator &(BitSet a , BitSet b)
2 {
3 // Intersect all the data items (&) and construct a new BitSet .
4 int length = (a . length + 31) / 32;
5 int [] data = new int [length];
6 for (int i = 0; i < length ; i++)
7 data [i] = a . data [i] & b. data [i];
8
9 return new BitSet (a .manager, data , a . length) ;

10 }

ăe second set operator we include is subset, that is, if BitSet a is a subset of BitSet b. ăe
subset operatorA ⊆ B can be expressed as

(
A ∩ B

)
= ∅. ăis is implemented by computing

a AND !b for the stored bit masks in both sets and returning false if any of the results are
non-zero.

Listing A.13: BitSet IsSubSet operator.
1 public static bool operator <=(BitSet a , BitSet b) {
2 // Subset (A <= B) is implemented as (A & !B) == EMPTY.
3 int length = (a . length + 31) / 32;
4 for (int i = 0; i < length ; i++)
5 if ((a . data [i] & ~b.data [i]) > 0)
6 return false ;
7
8 return true ;
9 }

A.5.2 BitSet Minimization

ăe following code shows the BitSet minimization algorithm. It merges all properties that are
always produced together. For example, if all properties known in the systemare{a1, a2, b1, c1}
and a1, a2 is always produced together, the result will be {{a1, a2} , b1, c1}.

Later we plan to extend it to also prune properties that are never required or never pro-
duced.

Listing A.14: BitSet Minimization
1 /// <summary>Prepares the BitSetManager for use . ăis must be called before any bitsets can

be used .
2 /// It will minimize the bit set properties and register all the mappings.</summary>
3 public void Prepare () {
4 ValidatePrepared (false) ;
5 prepared = true ;
6 Dictionary < string , string > mappings = MinimizeProperties () ;
7 RegisterMappings (mappings) ;
8 }
9

10 /// <summary>Minimize the properties . Currently , this includes merging all properties
11 /// that are always produced together .</summary>
12 /// < returns >A dictionary that maps property name−> property name.
13 /// If for instance A and B are always produced together , it will contain {A−>A, B−>A}.</

returns>
14 private Dictionary < string , string > MinimizeProperties () {
15 Dictionary < string , string > mappings = new Dictionary < string , string >() ;
16 // Register all direct mappings in all produced sets by default .
17 foreach (NestableHashSet< string> producedSet in produced)

90 Appendix A. Code Samples

18 foreach (string property in producedSet)
19 mappings[property] = property ;
20
21 HashSet< string> allProducedProperties = newHashSet< string>() ;
22 // Get all the produced properties unioned together .
23 foreach (NestableHashSet< string> producedSet in produced)
24 allProducedProperties .UnionWith(producedSet) ;
25
26 // Now, foreach over all properties , visiting each combination {propA, propB} once ,
27 // where propA < propB.
28 foreach (string propA in allProducedProperties) {
29 foreach (string propB in allProducedProperties) {
30 if (propA.CompareTo(propB) < 0) {
31 // Foreach over all produced sets . If a set contains propA or propB, add it
32 // to our set of sets .
33 HashSet<NestableHashSet< string>> setsContainingA = newHashSet<

NestableHashSet< string>>();
34 HashSet<NestableHashSet< string>> setsContainingB = newHashSet<

NestableHashSet< string>>();
35 foreach (NestableHashSet< string> p in produced) {
36 if (p .Contains(propA))
37 setsContainingA .Add(p);
38 if (p .Contains(propB))
39 setsContainingB .Add(p);
40 }
41 // Now setsContainingA contains all sets containing A and setsContainingB
42 // contains all sets containing B.
43 // If these two sets are set equals (contain the same elements) , it means
44 // that propA and propB are always produced together .
45 if (setsContainingA . SetEquals (setsContainingB)) {
46 // If so , merge the properties by making propB map to whatever propA
47 // maps to . ăe reason we’ re mapping propB to mappings[propA] and
48 // not to propA, is that propA could have been remapped earlier itself .
49 mappings[propB] = mappings[propA];
50 }
51 }
52 }
53 }
54 return mappings;
55 }
56
57 /// <summary>Registers the minimized mappings . ăis means adding entries
58 /// to the nameToIndex and indexToName dictionaries .</summary>
59 /// <param name=”mappings”>ăe mappings to register .</param>
60 private void RegisterMappings (Dictionary < string , string > mappings) {
61 // mappings . Values contains all possible bit property variations .
62 // Register a physical property for all these .
63 foreach (string property in mappings . Values) {
64 // Only add each possible variation once .
65 if (! nameToIndex.ContainsKey(property)) {
66 nameToIndex[property] = indexToName.Count;
67 indexToName.Add(newHashSet<string>() { property }) ;
68 }
69 }
70
71 // ăen, add all the remappings (i . e . {B−>A}).
72 foreach (KeyValuePair < string , string > pair in mappings) {
73 // Get the target index
74 int index = nameToIndex[pair . Value];

A.6. Optimizer Tests 91

75 // Make the from−property point to the correct index
76 nameToIndex[pair .Key] = index ;
77 // Add the from−property to the reverse lookup table
78 indexToName[index].Add(pair .Key);
79 }
80 }

A.6 Optimizer Tests

To verify that the optimizer implementation is working as expected, we have implemented
several automated tests. ăe tests create a query to be optimized programmatically and then
invoke the optimizer. Aĕerwards, they verify that something bad did not happen (e.g. Excep-
tion) or that the resulting query is the optimal one.

ăe following test constructs the query on page 38 (PDF page 55) in [Moe06] and is the
one used to generate the đgures in Section 7.3.2. It feeds the optimizer the worst possible
plan (cost 222), and asks the optimizer to optimize it using bushy enumeration. Aĕerwards it
veriđes that the resulting plan has the correct cost (6.06) and that it contains the correct nodes
in the correct locations. Finally it asks the optimizer to optimize the same query using leĕ-deep
enumeration, and veriđes that this plan has a worse cost estimate (24.06) and is correctly laid
out.

Listing A.15: SimpleJoins automated test.
1 [Test]
2 public void SimpleJoins ()
3 {
4 double[] cardinalities = new double[] { 10, 20, 20, 10 };
5 double[] selectivities = new double[] { 0.5, 0.01, 0.01 };
6
7 // We input the worst plan possible with cost 222.
8 TestNode[] scans = newTestNode[] { GetFileReaderScan (cardinalities [0], 0) ,
9 GetFileReaderScan (cardinalities [1], 1) ,

10 GetFileReaderScan (cardinalities [2], 2) ,
11 GetFileReaderScan (cardinalities [3], 3) };
12 TestNode[] joins = newTestNode [3];
13 joins [0] = GetJoin (”Id1” , ”Id2” , selectivities [0], scans [1], scans [2]) ;
14 joins [1] = GetJoin (”Id1” , ”Id0” , selectivities [1], joins [0], scans [0]) ;
15 joins [2] = GetJoin (”Id2” , ”Id3” , selectivities [2], joins [1], scans [3]) ;
16 TestNode query = GetQuery(joins [2]) ;
17
18 // Now test bushy enumeration . ăis should yield the plan (0 X 1) X (2 X 3)
19 // with cost 6.06
20 TestNode[] expectedScans = newTestNode[] { GetFileReaderScan (cardinalities [0], 0, true)

,
21 GetFileReaderScan (cardinalities [1], 1, true) ,
22 GetFileReaderScan (cardinalities [2], 2, true) ,
23 GetFileReaderScan (cardinalities [3], 3, true) };
24 TestNode[] expectedJoins = newTestNode [3];
25 expectedJoins [0] = GetJoin (”Id1” , ”Id0” , selectivities [0], expectedScans [0],

expectedScans [1], true) ;
26 expectedJoins [1] = GetJoin (”Id2” , ”Id3” , selectivities [2], expectedScans [2],

expectedScans [3], true) ;
27 expectedJoins [2] = GetJoin (”Id1” , ”Id2” , selectivities [1], expectedJoins [0],

expectedJoins [1], true) ;
28 TestNode expected = GetQuery(expectedJoins [2]) ;
29 expectedJoins [2][”SubplanCost”] = new BasicCost (6.06) ;
30

92 Appendix A. Code Samples

31 queryOptimizer . JoinEnumeration = JoinEnumeration .Bushy;
32 Node result = queryOptimizer .Optimize(query) ;
33 expected . RecursiveAssert (result) ;
34
35 // Now test leĕ −deep enumeration . ăis should yield the plan ((0 X 1) X 2) X 3
36 // with cost 24.06
37 expectedJoins [0] = GetJoin (”Id1” , ”Id0” , selectivities [0], expectedScans [0],

expectedScans [1], true) ;
38 expectedJoins [1] = GetJoin (”Id1” , ”Id2” , selectivities [1], expectedJoins [0],

expectedScans [2], true) ;
39 expectedJoins [2] = GetJoin (”Id2” , ”Id3” , selectivities [2], expectedJoins [1],

expectedScans [3], true) ;
40 expected = GetQuery(expectedJoins [2]) ;
41 expectedJoins [2][”SubplanCost”] = new BasicCost (24.06) ;
42
43 queryOptimizer . JoinEnumeration = JoinEnumeration . LeĕDeep ;
44 result = queryOptimizer .Optimize(query) ;
45 expected . RecursiveAssert (result) ;
46 }

B
CD-ROM

ăe accompanying CD-ROM includes this report, as well as the complete source code for our
implementation. It is structured as follows.

Report ăis report as PDF.

Source Source code for the optimizer.

B.1 How to Run the Optimizer

B.1.1 Screencast

A short screencast demonstrating the optimizer can be found at
http://www.screencast.com/t/kUI6SbbgLM.

B.1.2 Running the Binaries

Weare unable to provide running binaries of the optimizer, as they cur-
rently depend on assemblies from fast, which we were not allowed to
distribute.
To be able to test the optimizer, please contact Øystein Torbjørnsen
(Oystein.Torbjornsen@microsoft.com)

To be able to run the optimizer, you will need Microsoĕ Windows with .NET Framework
3.5 installed.

ăe optimizer is currently not integrated with MARS and only offers a very simple console
interface to run đve pre-deđned test cases:

Simple Query Runs optimization of a simple query with one join and one selection.

Selections Runs optimization of a query with n (choose) selections in sequence.

Simple Joins Runs optimization of a query with two joins, the same query as used in section
7.3.2, both bushy and leĕ-deep.

Chain Joins Runs optimization of a chain join query with n (choose) relations, both bushy
and leĕ-deep.

http://www.screencast.com/t/kUI6SbbgLM

94 Appendix B. CD-ROM

Speed Test Times the result of 10 runs of 1..15 joins for both chain and star joins, bushy and
leĕ-deep. Ends with a timings summary with averages in milliseconds for all test cases.

ăis is how to make it run:

1. Copy the full contents of
Binaries to a folder on your hard drive. ăis is important as it will be writing đles to the
current directory.

2. Run OptimizerProđling.exe. You will be presented with a few choices.

3. Aĕer you give it some input, it should print some text to the console, blink two console
windows and open two images; the query before and aĕer optimization. ăe images are
leĕ on disk in the current directory.

B.1.3 Building and Running

ăe supplied source code will not build since it depends on assemblies
from fast, which we were not allowed to distribute.

To be able open, build and run the optimizer, you will need Microsoĕ Windows with Vi-
sual Studio 2008 installed. ăe source code on the CD is self-contained and includes all exter-
nal dependencies, like NUnit.

ăis is how to compile and run it:

1. Copy the full contents of
Source to your hard drive.

2. Open the solutionOptimizer.sln in Visual Studio.

3. Make sure OptimizerProđling is set as the start up project.

4. Run the solution by hitting F5 or clicking run in Visual Studio.

Feel free to explore the source code and set breakpoints anywhere to đgure out its inner
workings.

Bibliography

[AT 08] AT and T Research. Graphviz - graph visualization soĕware. http://www.

graphviz.org/, 2008.

[Bil] Keith Billings. A tpc-d model for database query optimization in cascades. http:

//web.cecs.pdx.edu/~kgb/t/title.shtml.

[Bra03] Kjell Bratbergsengen. TDT4225: Lagring og behandling av store datamengder.
2003.

[CG94] Richard L. Cole and Goetz Graefe. Optimization of dynamic query evaluation
plans. pages 150–160, 1994.

[CGK05] Li Chen, Amarnath Gupta, and M. Erdem Kurul. Efficient algorithms for pattern
matching on directed acyclic graphs. In ICDE ’05: Proceedings of the 21st Inter-
national Conference on Data Engineering, pages 384–385, Washington, DC, USA,
2005. IEEE Computer Society.

[CMN98] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for
histogram construction: How much is enough. pages 436–447, 1998.

[Cor08] Microsoĕ Corporation. Sql server 2008 books online. http://msdn.microsoft.

com/en-us/library/bb522495.aspx, 2008.

[CR94] Chungmin Melvin Chen and Nick Roussopoulos. Adaptive selectivity estimation
using query feedback. SIGMODRec., 23(2):161–172, 1994.

[CZ98a] Mitch Cherniack and Stan Zdonik. Changing the rules: Transformations for rule-
based optimizers. In In Proceedings of the ACM SIGMOD International Conference
onManagement of Data, pages 61–72, 1998.

[CZ98b] Mitch Cherniack and Stan Zdonik. Inferring function semantics to optimize
queries. In In Proc. of 24th VLDB Conference, pages 239–250, 1998.

[GD87] Goetz Graefe and David J. DeWitt. ăe exodus optimizer generator. In SIGMOD
’87: Proceedings of the 1987 ACM SIGMOD international conference on Manage-
ment of data, pages 160–172, New York, NY, USA, 1987. ACM.

[Gei08] Rubino Geiss. Grgen.net. http://www.grgen.net, 2008.

http://www.graphviz.org/
http://www.graphviz.org/
http://web.cecs.pdx.edu/~kgb/t/title.shtml
http://web.cecs.pdx.edu/~kgb/t/title.shtml
http://msdn.microsoft.com/en-us/library/bb522495.aspx
http://msdn.microsoft.com/en-us/library/bb522495.aspx
http://www.grgen.net

96 Bibliography

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for
parallel execution. SIGMODRec., 21(2):9–18, June 1992.

[GM93] Goetz Graefe and William J. McKenna. ăe volcano optimizer generator: Extensi-
bility and efficient search. In ICDE, pages 209–218, 1993.

[Gra95] Goetz Graefe. ăe cascades framework for query optimization. Data Engineering
Bulletin, 18, 1995.

[HFC+00] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Sam Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive query processing: Technology in evolution. IEEE Data Engineering Bul-
letin, 23:2000, 2000.

[HKL+08] Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, Guy M. Lohman, and Volker
Markl. Parallelizing query optimization. Proc. VLDBEndow., 1(1):188–200, 2008.

[HR] Gerhard Hill and Andrew Ross. Reducing outer joins. ąe VLDB Journal.

[HS93] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing
queries with expensive predicates. In In Proc. of the ACM SIGMODConf. onMan-
agement of Data, pages 267–276, 1993.

[ISA+04] IF Ilyas, R Shah, WG Aref, JS Vitter, and AK Elmagarmid. Rank-aware query
optimization. In Proceedings of the 2004 ACM SIGMOD international conference
onManagement of data, pages 203–214, 2004.

[LM94] Alon Y. Levy and Inderpal Singh Mumick. Query optimization by predicate move-
around. In In Proceedings of the 20th VLDB Conference, pages 96–107, 1994.

[LPK+94] C. A. Galindo Legaria, J. Pellenkoĕ, M. L. Kersten, Arjan Pellenkoĕ, and Martin
Kersten. Cost distributions of search spaces in query optimization, 1994.

[Moe06] Guido Moerkotte. Building Query Compilers (Draě). 2006.

[Neu05] ăomas Neumann. Efficient Generation and Execution of DAG-Structured Query
Graphs. PhD thesis, Mannheim, 2005.

[NHM05] ăomasNeumann, SvenHelmer, andGuidoMoerkotte. On the optimal ordering
of maps and selections under factorization. In ICDE ’05: Proceedings of the 21st
International Conference on Data Engineering, pages 490–501, Washington, DC,
USA, 2005. IEEE Computer Society.

[NM08] ăomas Neumann and Guido Moerkotte. Single Phase Construction of Opti-
mal DAG-structured QEPs. http://pi3.informatik.uni-mannheim.de/~moer/

Publications/MPI-I-2008-5-002.pdf, June 2008.

[NUn08] NUnit.org. Nunit - unit testing framework for .net. http://www.nunit.org, 2008.

[ONK+95] Fatma Ozcan, Sena Nural, Pinar Koksal, Mehmet Altinel, and Asuman Dogac.
A region based query optimizer through cascades optimizer framework. Bulletin of
the Technical Committee on Data Engineering, Vol, 18:30–40, 1995.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based
query rewrite optimization in starburst. In In SIGMOD, pages 39–48, 1992.

http://pi3.informatik.uni-mannheim.de/~moer/Publications/MPI-I-2008-5-002.pdf
http://pi3.informatik.uni-mannheim.de/~moer/Publications/MPI-I-2008-5-002.pdf
http://www.nunit.org

Bibliography 97

[Pos08a] PostgreSQL Global Development Group. Postgresql 8.3.4 documentation. http:
//www.postgresql.org/docs/manuals/, 2008.

[Pos08b] PostgreSQL Global Development Group. Postgresql 8.3.4 source code. http://

www.postgresql.org/ftp/source/v8.3.4/, 2008.

[Pos08c] PostgreSQL Global Development Group. Postgresql history. http://www.

postgresql.org/about/history, 2008.

[Red08] RedGate Soĕware Ltd. Ants prođler - .net code andmemory prođler. http://www.
red-gate.com/products/ants_profiler/index.htm, 2008.

[Roy98] Prasan Roy. Optimization of dag-structured query evaluation plans, 1998.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensi-
ble algorithms formulti query optimization. SIGMODRec., 29(2):249–260, 2000.

[SAC+79] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, It. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. pages
23–34, 1979.

[SC75] John Miles Smith and Philip Yen-Tang Chang. Optimizing the performance of a
relational algebra database interface. Commun. ACM, 18(10):568–579, 1975.

[SH05a] M Stonebraker and J Hellerstein. Anatomy of a database system. Readings In
Database Systems, 2005.

[SH05b] M Stonebraker and J Hellerstein. What goes around comes around. Readings In
Database Systems, Jan 2005.

[SRH86] Michael Stonebraker, Lawrence A. Rowe, and Michael Hirohama. ăe design
of postgres. In IEEE Transactions on Knowledge and Data Engineering, pages
340–355, 1986.

[Sto87] Michael Stonebraker. ăe design of the postgres storage system. pages 289–300,
1987.

[WLB03] Ju Wang, Jinmiao Li, and Greg Butler. Implementing the postgresql query opti-
mizer within the opt++ framework. In APSEC ’03: Proceedings of the Tenth Asia-
PaciĖc Soěware Engineering Conference Soěware Engineering Conference, page 262,
Washington, DC, USA, 2003. IEEE Computer Society.

[ZLFL07] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner.
Efficient exploitation of similar subexpressions for query processing. In SIGMOD
’07: Proceedings of the 2007 ACM SIGMOD international conference on Manage-
ment of data, pages 533–544, New York, NY, USA, 2007. ACM.

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/ftp/source/v8.3.4/
http://www.postgresql.org/ftp/source/v8.3.4/
http://www.postgresql.org/about/history
http://www.postgresql.org/about/history
http://www.red-gate.com/products/ants_profiler/index.htm
http://www.red-gate.com/products/ants_profiler/index.htm

	Introduction
	Goals of The Project
	Abstract View of an Optimizer
	Runtime System
	What Makes MARS Different to RDBMS-es?
	Current State of Query Optimization in MARS
	Selected Problems Related to Query Optimization
	Overview of the Report

	Case Studies and Previous Work
	Introduction
	The Early Years: System R
	PostgreSQL and Other Open Source Query Optimizers
	Rule-based Optimization
	Transformative vs. Constructive Optimizers
	Reflections

	Cost Estimation and Statistics
	Introduction
	Cost Factors
	Statistics and Example Calculations
	Cost Component
	Statistics Gathering
	Statistics and MARS

	DAG-Structured Query Graphs
	Introduction and Previous Work
	Motivation
	Challenges
	Share Equivalence and Common Subexpressions

	Design and Implementation
	Introduction and Goals
	The Big Picture
	Node Structure
	Pre- and Post-Processing
	Plan Generation
	Graph Pattern Matching

	Rules: Search Space and Pre-/Post Processing
	Introduction
	Transformation Rules
	Constructive Rules

	Current State
	Results
	Identified Issues and Suggested Solutions
	Sample Query Optimizations

	Conclusion and Further Work
	Evaluation
	Further Work

	Code Samples
	Rule Binder Initialization
	dot Language Sample
	Selection Rule
	MergeTrimSort Rule
	BitSet
	Optimizer Tests

	CD-ROM
	How to Run the Optimizer

	Bibliography

