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Abstract 

Most of today’s DBMSs rely heavily on disk subsystems for persistent storage of data and 

transaction logs. Both in terms of price and performance, the gap in the memory hierarchy 

between main memory and disk storage is a rather huge one. In the latest years, flash 

memory – which appears to fill this gap – has started to gain market. This paper looks at 

what the flash technology offers, how it affects database applications, as well as how to 

exploit it in the best possible way. 
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1 Introduction 
Today’s DBMSs use magnetic disk drives as their primary means of storage. This comes of 

several reasons: First and foremost, they offer persistent storage which is crucial to support 

critical data applications in case of system or power failure. Second, disk drives are 

acceptably quick – descent throughput rate and acceptable seek times, and the cost of 

storing one gigabyte is relatively low. Moving up the traditional memory hierarchy, we get to 

main memory, which is a huge jump upwards both in price and performance, in addition to 

the volatile nature of DRAM. 

Today’s DBMSs therefore focus on how to take advantage of both, by using main memory as 

a smaller buffer and disk as permanent storage of large data volumes as well as stable 

storage of transaction logs, in order to support ACID2 properly. 

It is in this gap in the memory hierarchy flash memory comes into the picture, falling in 

between traditional RAM and persistent mass storage based on rotating disks in terms of 

cost of ownership (including power), access latency and transfer bandwidth (RAIDed) [1]. In 

addition to that, flash memory is persistent storage. We can summarize the most important 

property, latency, with the following relation: 

Latency: Disk = 100 x Flash memory = 100 000 x RAM 

There are several ways to introduce flash memory into today’s computer systems. It can be 

connected via a DIMM memory slot, via an S-ATA disk interface, or an entirely new 

interface. The trend today is the disk interface approach. Another major question is whether 

flash memory should be considered a special part of main memory, or as a special part of 

persistent storage, mimicking a hard disk drive. A third question is if hard disks will be 

completely replaced by flash memory or if they will still be an active part in the memory 

hierarchy. Section 3 aims to give insight into these questions. 

 
Table 1 – Characteristics of Magnetic disks vs. NAND Flash vs. RAM (ca.) [2], [3] 

It is clear that such a new level in the memory hierarchy can be of great benefit to DBMSs. If 

we look at typical database queries, pending I/O3 operations are often the main contributor 

to latency, either it is page read requests, or transaction log page flushes on transaction 

commits. If we can speed up the I/O by a factor of 100, this can clearly boost performance. 

That said, it is not given that all types of queries will run equally fast or faster on flash 

memory, as we will see in the following sections. We will also possibly need to reconsider the 

data structures we are using, such as B-trees, to exploit the full opportunities of flash 

memory. 

The rest of this paper is organized as follows. Section 2 describes the characteristics of flash 

memory. Section 3 discusses how flash memory fits into the memory hierarchy; section 4 

                                                
2 Atomicity, Consistency, Isolation, Durability 
3 Input/Output 

Media Price 

Access time Transfer 
bandwidth 

Power Cons. 
Act/Idle/Slp Read Write Erase 

Magnetic 
Disk 

$0.3/GB 12.7 ms 
(2 KB) 

13.7 ms 
(2 KB) 

N/A 85 MB/s 13W/8W/1W 

NAND Flash $30/GB 80 μs 
(2 KB) 

200 μs 
(2 KB) 

1.5 ms 
(128 KB) 

25 MB/s 1W/0.1W/ 
0.1W 

DDR2-533 
RAM 

$25/GB 22.5 ns 22.5 ns N/A 4266 MB/s 12W/6W/NA 
per GB 
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illustrates flash memory impact with the five-minute rule, while section 5 presents some 

examples of what we need to do to exploit the full potential of flash memory. Finally, section 

6 presents a few selected DBMSs written especially with flash memory in mind. 

2 Characteristics of NAND Flash Memory 
Before we can discuss what flash memory means for the DBMS world, we need to look at 

what makes flash memory different from traditional permanent storage – magnetic disk 

drives. There exists multiple types of flash memory, but this paper is about NAND flash 

memory, the type used in most flash memory disk devices today. 

2.1 No In-Place Updates 
While flash memory can write to clean (empty) sectors within a matter of microseconds, it 

cannot overwrite sectors. Before a sector can be overwritten, it has to be erased, which is a 

time-consuming process that takes around 1.5 ms. To make matters worse, erasing is done 

to whole erase units, which usually spans many sectors (usually 16 KB – 128 KB). 

Overwriting a single sector means reading out all the other sectors, erasing the unit and 

writing all of it back. 

This can actually turn out to be even slower than magnetic hard drives, which can overwrite 

blocks with the usual latency. Considering that page overwrites is a common access pattern 

for modern DBMSs, this becomes an important issue, as we will see. 

2.2 No Mechanical Latency 
Unlike magnetic disk drives, flash memory is purely electronic and has no mechanically 

moving parts. For random accesses, seek and rotation time becomes the dominant factor for 

magnetic drives, while for flash memory, the latency is almost linearly proportional to the 

amount of data transferred, regardless of their physical location in memory. 

This is the major selling point for flash memory – it can read or write (clean) sectors with 

close to constant time, making random reads/writes orders of magnitude faster than 

magnetic hard drives. 

2.3 Limited Number of Writes 
Flash memory has the property that it wears out and becomes statistically unreliable after a 

finite number of erase/write cycles, typically around 100 000. However, most flash memory 

devices or host systems adopt a process called wear leveling to evenly distribute erase cycles 

across the entire memory segment, prolonging its life to effectively eliminate the problem. 

[2], sec. 2.3. 

2.4 Asymmetric Speed of Read/Write 
While symmetric for most magnetic disk drives, the read speed of flash memory is typically 

at least twice as fast as the write speed. This is because it takes longer to inject a charge 

into a memory cell than reading its status. Most software systems today, including DBMSs, 

assume symmetric I/O speed, and are therefore not optimally tuned to be used with flash 

memory. 

When using flash memory, we want to find ways to reduce writes, even if it increases reads 

a little. 
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3 The Role of Flash Memory in the Memory Hierarchy 

3.1 Extension of Buffer Pool or Persistent Storage? 
As mentioned in the introduction, there are several ways to introduce flash memory into the 

memory hierarchy. How to connect it to the system is not so interesting, but the question 

concerning if flash memory should be just an extended buffer pool or an extension of the 

persistent storage is a more important one. 

[2] claims that database systems will benefit from the latter solution. (For reasons we not 

will look at here, the situation is a different one for file systems than for databases. See [2] 

for details). One of the reasons for that is due to recovery – ensuring durability of 

committed transactions at system or power failure. If flash memory is considered non-

persistent storage, at least log writes would have to be flushed to disk at transaction 

commit, still leaving us with the disk as the slowest component involved in a transaction 

commit. If flash memory is considered persistent storage on the other hand, writing log 

records to flash memory is enough to satisfy the durability requirements and could possibly 

result in a speedup of transaction commit latency. 

However, the low write bandwidth of flash memory speaks against using it as the sole log 

media. One possible solution is have dual logs, one on disk and one in flash memory, to 

combine low latency and high bandwidth. 

To ensure fast recovery after a system or power failure, database systems employ 

checkpoints. During recovery, only activity since the last checkpoint plus some limited 

activity indicated in the checkpoint information is required to be examined. This is 

effectively achieved by writing dirty pages from the buffer pool to persistent storage during 

the checkpoint process, which usually runs at regular intervals, given in seconds or 

minutes. 

If flash is considered non-persistent storage, dirty pages would need to be written to disk, 

with the increased latency this gives. If there is a lot of write activity against flash memory, 

this would end up in frequent checkpoints, meaning frequent writes to disk, failing the goal 

of having flash memory absorb write activity. 

However, if flash memory is considered persistent, the checkpoint processing would only 

need to write dirty pages in main memory to flash memory, possibly speeding up the 

checkpoint process as well. 

3.2 Replace or Supplement Hard Drives? 
The third question mentioned was if flash memory will replace hard drives completely as an 

active participant in a running system (leaving them as backup devices, for instance), or if 

they will supplement hard drives as an additional level in the memory hierarchy, having 

hard drives store less frequently accessed data. 

As of now (and probably a few years from now), flash drives are probably too expensive to 

replace hard drives, at least for bigger systems. For smaller systems it is achievable, but for 

the largest of today’s OLTP4 systems, towering at over 18 terabytes and over 50 thousand 

tps5[4], it becomes very expensive. Still, as flash memory becomes cheaper, it is likely to 

replace hard drives in the long run [5]. 

                                                
4 Online Transaction Processing 
5 transactions per second 
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Most of this paper looks at the complete replacement scenario, but using flash memory as a 

layer in between main memory and disk is also a very interesting prospect. It can be used as 

a level 2 buffer, so that pages falling out of main memory buffer can reside in flash memory 

buffer another while. Such a solution could be implemented using two separate LRU6 

queues in main memory. As another example, flash memory is also interesting when 

processing large queries which require more memory than available main memory. One 

such example is sorting of large data volumes, using external merge sort [6]. The traditional 

way is to merge runs on disk, but with flash, we could first merge runs in flash memory and 

then merge those runs on disk to achieve increased sort efficiency. 

4 The Five-Minute Rule Before and After Flash Memory 
When dimensioning a computer database system, there is always a question of how much 

RAM one should add. Frequently accessed pages should be kept in main memory, while less 

frequently accessed pages should reside on disk. In some situations, response time 

requirements make it necessary to keep certain pages in memory, but more often, keeping 

data in main memory is purely an economic issue. If we add too much main memory it 

becomes very expensive, but if we add too little, we will need a very expensive disk system to 

handle the increased disk load due to little buffer space. 

The five-minute rule was presented by Gray and Putzolo in 1987, and describes the break-

even point in access frequency when trading off acquisition cost for memory and I/O 

capacity. The question they asked themselves was “When is it cheaper to keep a record in 

main memory rather than access it on disc?” [7]. At that time, they concluded that for a 

page size of 1 KB, 400 seconds (~5 minutes) was the break-even interval. They also 

concluded that the break-even interval is inversely proportional to the page size, and gave 1 

hour for 100 byte pages and 2 minutes for 4 KB. This means that at 1 KB page was, at that 

time, cheaper to keep in memory if was accessed more frequently than every 5 minutes. 

Break-even interval =
Pages per MB of RAM

Accesses Per Second Per Disk
×

Price per disk drive

Price per MB of RAM
 

Equation 1 - Formula forming the basis of the five-minute rule 

Ten years later, in 1997, the rule was revised and updated. Prices had dropped and 

performance gone up, but still: The break even-interval for 4 KB pages was still around 5 

minutes (compared to 2 minutes in 1987) [8]. 

Twenty years later, in 2007, the rule was reviewed again, this time taking flash memory into 

account [2]. The results are shown in Table 2. SATA means a regular S-ATA disk drive; flash 

means flash memory with today’s prices, while $400 means a 32 GB NAND flash drive 

available for $400 in the future rather than $999 today.  

Page size 1KB 4KB 16KB 64KB 256KB 

RAM-SATA 350 87 22 6 1 

RAM-flash 42 15 8 6 6 

Flash-SATA 538 135 34 9 2 

RAM-$400 17 6 3 2 2 

$400-SATA 1343 336 84 21 6 
Table 2 - Break-even intervals [minutes] [2]. 

                                                
6 Last recently used 
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We can see that for 4 KB pages, the break-even interval between RAM and disk is now close 

to 1½ hours, because of dramatic fall in RAM costs. If we look at RAM vs. flash, we get that 

break-even is 15 minutes, because flash can deliver cheaper accesses than disk drives. If we 

assume $400, we get 6 minutes. We can see that turn-over in RAM is about 15 times faster 

(1½ hours / 6 minutes) if flash is secondary storage rather than disk. 

If we use the rule on flash vs. disk, we get (from row three) that break-even is 135 minutes 

or 2¼ hours. This suggests that all data touched more frequently than 2¼ hours, which is 

effectively all active data, should stay in RAM and flash memory [2]. This leaves disks with 

storing archive data, such as transaction history and other data not frequently used. 

5 Data Structures Reconsidered 
Most DBMS data structures and algorithms are based on the characteristics of the 

underlying storage subsystems – their latency, transfer rate and block size. For example, 

one of the reasons to why all major DBMSs use B-trees (or B-link trees) and not binary 

search trees, is high read latency for disk drives. When we introduce flash memory, with 

radically different characteristics, we have to review the data structures and algorithms in 

use. As an example, this chapter looks closer at B and R-trees and how to perform out-of-

place updates. 

5.1 Log-Structured Approach 
Considering that typical OLTP workloads often consists of a large portion random writes, the 

no in-place update property of flash memory is bad news. Table 3 shows typical numbers we 

can expect from running queries against a magnetic disk and NAND flash. 

Media 

Random-to-sequential Ratio 

Read workload Write workload 

Magnetic Disk 4.3 ~ 12.3 4.5 ~ 10.0 

NAND Flash 1.1 ~1.2 2.4 ~ 14.2 
Table 3 - DBMS Performance: Sequential vs. random [3] 

For disk, the ratio is fairly high both for read and write. Random access is significantly 

slower than sequential, but in practice equal for read and write. For flash, the ratio is much 

lower for read, indicating almost no higher latency for random reads. For write, however, the 

ratio is even more sensitive to access pattern than the disk – this is caused by the pattern 

triggering several flash erase operations. 

To overcome this problem, we must ensure that we perform as few in-place updates as 

possible. One approach to this is to employ a log-structured system [9], where we log the 

changes made to the data instead of overwriting it. This way we avoid the costly erase 

operations, at the cost of an increased number of reads (which are fairly quick for flash 

memory anyway). 

Traditional log structured systems usually have a sequential, common log for all pages. 

When using flash memory, there is no compelling reason to have a sequential log, as 

random writes (with no erase) are just as quick. Therefore, [3] suggests that pages are split 

in two – one section for data and one for log records. Log records describing changes to the 

data in the page are logged to the log section in the same page, effectively co-locating log and 

data, making it faster to reapply the log records to the data later to get the current version of 

a data segment. [3] also describes merge procedures to be invoked when pages run out of 

log space.  
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5.2 B-trees and Flash Memory 
B-trees are the “work horses” of most of today’s DBMSs, and it is therefore paramount that 

they work well on the storage subsystem in use. B-trees are balanced, rooted search trees, 

with nodes that have pointers to two or more children in the tree, possibly several 

thousands, sorted on key value. B+-trees have data records stored in the leaf nodes. 

There is primarily one big issue with regular B-trees and flash memory, with the no in-place 

update property of flash memory as the cause. Consider a regular B+-tree stored in flash 

memory. Whenever a key value is updated in a data record in a leaf node, this means that 

the node will have to be updated. Since it cannot be updated in-place, it will have to be 

written to a new location. Since this changes the physical address of the node, the pointer in 

the parent node will have to be updated too. This causes the parent node to be written to a 

new location, and so on. This process continues all the way to the root, causing H writes, 

where H is the height of the tree. This method of updating a tree is called a “wandering tree” 

and is shown in Figure 1 [10]. It is clearly not very optimal. 

 

Figure 1 - A "wandering tree" update example [10] 

There are in general at least two ways to solve this problem. One of them is to create a 

mapping layer between the B-tree implementation and the flash memory device, mapping 

logical page addresses to physical addresses. This layer helps avoiding in-place updates and 

speeds up the B-tree implementation. The advantage of this approach is that requires 

minimal changes in the application implementing the B-tree. See [11] for an example of 

such a solution. 

Another solution is to revise the whole B-tree implementation, optimizing it for no in-place 

updates. One such implementation is the μ-Tree [10], which is a balanced search tree, 

similar to a B+-tree. It is implemented so that as much as possible of the path from the root 

node to a leaf node is within a single page in order to minimize the number of flash write 

operations required when a leaf node is updated. [10] claims that the μ-Tree outperforms 

B+-trees by up to 28% for real workload traces. Figure 2 shows an update of the page F in a 

μ-Tree. 
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Figure 2 - A μ-Tree update example [10] 

Another thing to consider for B-trees on flash memory is page size. The optimal page size 

combines a short access time with a high reduction in remaining search space (called the 

utility). For hard disks, the access time dominates for all small page sizes, such that 

additional byte transfer and thus additional utility is almost free [2]. Table 4 and Table 5 

shows utility vs. time for B-tree nodes on disk and on flash memory. 

Table 4 - Page utility for B-tree nodes on disk 
[2] 

Page 
Size 

Records 
/ page 

Node 
utility 

Access 
time 

Utility 
/ time 

4 KB 140 7 10.0 0.58 

16 KB 560 9 12.1 0.75 

64 KB 2,240 11 12.2 0.90 

128 KB 4,480 12 12.4 0.97 

256 KB 8,960 13 12.9 1.01 

512 KB 17,920 14 13.7 1.02 

1 MB 35,840 15 15.4 0.97 Table 5 - Page utility for B-tree nodes on flash 
memory [2] 

Page 
Size 

Records 
/ page 

Node 
utility 

Access 
time 

Utility 
/ time 

1 KB 35 5 0.11 43.4 

2 KB 70 6 0.13 46.1 

4 KB 140 7 0.16 43.6 

8 KB 280 8 0.22 36.2 

16 KB 560 9 0.34 26.3 

64 KB 2,240 11 1.07 10.3 

 

For disk, 256 KB is very near the optimal page size. For flash memory, the transfer time 

dominates even for small pages, so the optimal page size is just 2 KB [2]. 

5.3 R-Trees and Flash Memory 
R-trees are similar to B-trees, but are used for spatial access methods, i.e. indexing 

multidimensional data, such as geographic locations [12]. They suffer from the same 

problems regarding in-place updates as B-trees. [13] describes an implementation which 

uses a reservation buffer, which is an in-memory write buffer, to queue up newly created 

objects before writing them to disk, minimizing the number of overwrites. They claim to have 

achieved significantly better performance than for regular R-trees. 

6 Examples of two DBMSs optimized for Flash 
Quite some research has been done in this area, and the goal of this section is to provide 

some insight into two research databases, built especially with flash memory in mind. 

6.1 LGeDBMS 
Flash memory is not only relevant in big database systems, but also smaller systems like 

mobile phones and embedded devices, which typically have flash memory as their only 

means of storage. LGeDBMS is a relational database system for such applications, “designed 

for efficient data management and easy data access in embedded mobile systems”[14]. 

LGeDBMS employs a log-structured approach as described in [9], doing out-of-place 

updates instead of in-place to avoid the costly erase operations. It also includes a PID 
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mapping table, mapping logical pages to physical pages. This makes it possible to exploit 

certain properties of the underlying file system, or control wear leveling if it is run directly 

against the flash memory at the device driver level. Basic, atomic transactions are 

supported. More information about LGeDBMS can be found in [14]. 

6.2 FlashDB 
FlashDB is a self-tuning database from Microsoft Research, optimized for sensor networks 

using NAND flash storage. As they write, in practical systems, flash memory is used in 

different packages such as on-board flash chips, compact flash cards, secure digital cards 

and so on. MSR’s experiments reveal non-trivial differences in their access costs. 

Furthermore, databases may be subject to different types of workloads, resulting in that 

existing databases are not optimized for all combinations of hardware and workloads [15]. 

The motivation behind FlashDB is to, in addition to performing the usual out-of-place 

updates; utilize self-tuning indexes that dynamically adapts their storage structure to 

workload and underlying storage device. They key point is that they use B+-trees in two 

modes – log mode and disk mode. Disk mode is much like regular B+-trees, while log mode 

employs a log-structured approach much like [9]. They each have their pros and cons. Even 

individual pages in the same tree can be in either mode. The storage manager chooses 

between the two modes, along with adjusting the page size for optimal performance. See [15] 

for more information about FlashDB. 

7 Conclusion 
It is clear that flash memory has come to stay, and that it will become cheaper and cheaper. 

Given a lower price in the future, its low access times and future larger memory sizes; it is 

likely to replace hard disk drives in the long run. 

In the DBMS world, flash memory has some very interesting properties, namely low latency 

and persistent storage, which enables us to retrieve and update data faster and with lower 

latency than before. However, there are some issues concerning no in-place updates for 

flash memory that we will need to address first. 

We have also seen that the five-minute rule still holds with 4 KB pages and a future $400 

flash drive, but with a larger page size for disks – 64 KB. For 4 KB pages it also predicts that 

all active data will stay in RAM and flash memory.  
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